Skip to main content

The Power Exchange Function: A General Model for Metal Adsorption onto Geological Materials

  • Chapter

Abstract

The empirical data on adsorption of metal cations by naturally occurring soil materials can be systematized in terms of power exchange functions. For example, given the reaction PbX + Ca2+ = CaX + Pb2+, the exchange function is: Kex = ([Pb2+]/[Ca2+]) (CaX/PbX)n where Kex and n are constants, the brackets denote activities of the ions, and CaX and PbX are their mole fractions on sorbent X. This approach is mathematically equivalent to regular solution exchange when the mole fractions of two competing cations sorbed lie between 0.25 and 0.75, and to Freundlich isotherm-type behavior when the mole fraction of the minor cation is < 0.05. Combined literature review and laboratory study show that the exchange behavior of H+, Na+, K+, Ca2+, Mg2+, Cd2+, Co2+, Ni2+, Pb2+, UO 2+2 and Zn2+ and their hydroxy-complexes on a variety of adsorbents (montmorillonites, beidellite, illite, ferric oxyhydroxides, zeolites, soils and humic materials) can be accurately described for a wide range of competing sorbate concentrations and ratios using from one to three power exchange expressions. The adsorption of the alkali metal and alkaline earth cations on pure clays at about 10−2 to 10−4 M often follows the power exchange function with n = 1, corresponding to simple ion exchange. Adsorption of heavy metals (between 10−3 and 10−7 M) is usually more complex, and fits power exchange functions with n = 0.8 to 2.0. Log-linearization of power exchange expressions yields lines with correlation coefficients usually in the range from 0.98 to 1.00. The power exchange model is a potentially useful predictor of heavy metal levels in the subsurface controlled by adsorption processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.O. James and G.A. Parks, Characterization of aqueous colloids by their electrical double layer and intrinsic surface chemical properties, in: “Surface and Colloid Sci.”, Vol. 12, E. Matijevic, ed., Plenum Press, New York (in press).

    Google Scholar 

  2. R.O. James, The TiO2/aqueous electrolyte system - applications of colloid models and model colloids, in: “Adsorption from Aqueous Solutions”, P.H. Tewari, ed., Plenum Press, New York (1981).

    Google Scholar 

  3. J.A. Davis and J.O. Leckie, Speciation of adsorbed ions at the oxide/water interface, in: “Chemical Modeling in Aqueous Systems”, E.A. Jenne, ed., Am. Chem. Soc. Symp. Ser. 93:299–317 (1979).

    Chapter  Google Scholar 

  4. L.N. Plummer, B.F. Jones and A.H. Truesdell, WATEQF - A FORTRAN IV version of WATEQ, a computer program for calculating chemical equilibrium of natural waters, U.S. Gel. Surv. Water-Resources Inv. 76–13.

    Google Scholar 

  5. K. Harmsen, Theories of cation adsorption by soil constituents Discrete-site models, in: “Soil Chemistry. B. Physico- Chemical Models”, G.H. Bolt, ed., Elsevier Scientific Publ. Co., New York (1979). pp. 77–139.

    Chapter  Google Scholar 

  6. R.M. Garrels and C.L. Christ, “Solutions, Minerals, and Equilibria”, Freeman, Cooper and Company, San Francisco, CA. (1965).

    Google Scholar 

  7. A.J. Truesdell and C.L. Christ, Am. J. Sci. 266: 402 (1968).

    Article  CAS  Google Scholar 

  8. R. Levy and D. Hillel, Soil Sci. 106 (5): 393 (1968).

    Article  CAS  Google Scholar 

  9. A.P. Vanselow, Soil Sci. 33: 95 (1932).

    Article  CAS  Google Scholar 

  10. J.A. Kittrick, Soil Sci. Am. Jour. 40: 147 (1976).

    Article  CAS  Google Scholar 

  11. F.L. Sayles and P.C. Mangelsdorf, Jr., Geochim. Cosmochim. Acta 43: 767 (1979).

    Article  CAS  Google Scholar 

  12. J. Gardiner, Water Research 8: 157 (1974).

    Article  CAS  Google Scholar 

  13. J.T. O’Connor and C.E. Renn, Am. Water Works Assoc. 56 (8): 1055 (1964).

    Google Scholar 

  14. M.G.M. Bruggenwert and A. Kamphorst, Survey of experimental information on cation exchange in soil systems, in: “Soil Chemistry. B. Physico-Chemical Models”, G.H. Bolt, ed., Elsevier Scientific Publ. Co., New York (1979).

    Google Scholar 

  15. S.J. Toth and A. Ott, Envir. Sei. Technol. 14: 935 (1970).

    Article  Google Scholar 

  16. E.A. Jenne and S.N. Luoma, The forms of trace elements in soils, sediment, and associated waters, in: “Biological Implications of Metals in the Environment”, R.E. Wildung and H. Drucker, eds., CONF-750929, NTIS, Springfield, VA. (1977). pp. 110–143.

    Google Scholar 

  17. G.H. Bolt, “Soil Chemistry. B. Physico-Chemical Models”, Elsevier Scientific Publ. Co., New York (1979). pp. 479-.

    Google Scholar 

  18. J.P. Frizado, Ion exchange on humic materials - a regular solution approach, in: “Chemical Modeling in Aqueous Systems”, E.A. Jenne, ed., Am. Chem. Soc. Symp. Series 93 (1979). pp. 133–145.

    Chapter  Google Scholar 

  19. D. Ozsvath, “Modeling Heavy Metal Sorption from Subsurface Waters with the n-Power Exchange Function”. M.S. Thesis in Geochemistry, Pennsylvania State University, University Park, PA. (1979). pp. 61–.

    Google Scholar 

  20. J.P. Singhal, D. Kumar and G.K. Gupta, Ind. J. Chem. 14A: 929 (1976).

    Google Scholar 

  21. G.L. Gaines and H.D. Thomas, J. Chem. Phys. 23: 2322 (1955).

    Article  CAS  Google Scholar 

  22. R. Van Bladel and R. Menzel, “A thermodynamic study of sodium-strontium exchange on Wyoming bentonite”, Internatl. Clay Conf., 1969, pp. 619–634.

    Google Scholar 

  23. M.H. El-Sayed and R.G. Burau, Soil Soc. Am. Proc. 34: 397 (1970).

    Article  CAS  Google Scholar 

  24. E.J. Udo, Soil. Sci. Am. Jour. 42: 556 (1978).

    Article  CAS  Google Scholar 

  25. J.E. Bittel and R.J. Miller, J. Envir. Quality 3: 250 (1974).

    Article  Google Scholar 

  26. D.L. Suarez and D. Langmuir, Geochim. Cosmochim. Acta 40 (6): 589 (1976).

    Article  CAS  Google Scholar 

  27. E.A. Jenne, Trace element sorption by sediments and soils - sites and processes, in: “Symp. on Molybdenum in the Environment”, W. Chappel and K. Petersen, eds., M. Dekker Inc., New York (1977). pp. 425–553.

    Google Scholar 

  28. R.R. Gadde and H.A. Laitinen, Envir. Letters 5: 223 (1973).

    Article  CAS  Google Scholar 

  29. C.H. van der Weijden and D. Langmuir, unpublished manuscript (1976).

    Google Scholar 

  30. C-K.D. Hsi and D. Langmuir, manuscript in preparation (1980).

    Google Scholar 

  31. D. Langmuir, Geochim. Cosmochim. Acta 42: 589 (1978).

    Article  Google Scholar 

  32. C.E. Marshall and W.E. Bergman, J. Phys. Chem. 46: 52 (1942).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Langmuir, D. (1981). The Power Exchange Function: A General Model for Metal Adsorption onto Geological Materials. In: Tewari, P.H. (eds) Adsorption From Aqueous Solutions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3264-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3264-0_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3266-4

  • Online ISBN: 978-1-4613-3264-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics