Time Delay and Resonance in Simple Scattering

  • Kalyan B. Sinha


The concept of time delay is used to understand resonances in simple scattering. In a simple model of one dimensional Stark Hamiltonian, we test this idea and show that for small field strength one has spectral concentration near the eigenvalue of the unperturbed Hamiltonian. Time-delay for the model also exhibits a similar feature.


Time Delay Resonance Energy Selfadjoint Operator Trace Class Spectral Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Simon, B., Ann. Math. 97, 247 (1973).MATHCrossRefGoogle Scholar
  2. [2]
    Davies, E.B., Lett. Math. Phys. 1, 31 (1975).MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Sinha, K.B., Lett. Math. Phys. 1, 251 (1976).CrossRefGoogle Scholar
  4. [4]
    Rowland, J.S., Amer. J. Math. 91, 1106 (1969).MathSciNetCrossRefGoogle Scholar
  5. [5]
    Jauch, J.M., Sinha, K.B., Misra, B., Helv. Phys. Acta 45, 398 (1972).MathSciNetGoogle Scholar
  6. [6]
    Birman, M.S., Krein, M.G., Soviet Math Doklady 3, 740 (1962).MATHGoogle Scholar
  7. [7]
    Amrein, W.O., Jauch, J.M., Sinha, K.B., Scattering Theory in Quantum Mechanics, W.A. Benjamin, Reading, Mass., 1977.MATHGoogle Scholar
  8. [8]
    Sinha, K.B., Rep. Math. Phys. 14. 65 (1978).MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    Friedrichs, K.O., Rejto, P.A., Comm. Pure Appl. Math. 15, 219 (1962).MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    Dreyfus, T., J. Math. Anal. Appl. 64, 114(1978).MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Kalyan B. Sinha
    • 1
    • 2
  1. 1.Indian Statistical InstituteNew DelhiIndia
  2. 2.Department of MathematicsUniversity of ColoradoBoulderUSA

Personalised recommendations