Skip to main content

Abstract

Dae to the pioneering contributions of Kato-Kuroda [10], [11] and to the more recent works of Agmon [l] and Enss [6], a spectral and scattering theory for Schrodinger operators with short range potentials is now well established. An interesting example of a potential which does not belong to this class is the Wigner-von- Neumann [17] potential. This potential is the sum of a short range potential and of an oscillating one which is of the form,

$${P_o}\left( x \right) = c\frac{{\sin b{{\left| x \right|}^\alpha }}}{{{{\left| x \right|}^\beta }}},\alpha ,\beta > 0$$
((1.1))

where c = -8, b = 2 and α = β = 1.

Supported by NSF Grant MCS 79-02538-AOl

Supported by NSF Grant MCS 78-02199-A01

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuol. Norm. Sup. Pisa, 2 (1975) 151–218.

    MathSciNet  MATH  Google Scholar 

  2. M. Ben-Artzi and A. Devinatz, Spectral and scattering theory for the adiabatic oscillator and related potentials, J. Math. Phys. 111 (1979) 594–607.

    Article  MathSciNet  Google Scholar 

  3. B. Bourgeois, Quantum-mechanical scattering theory for long-range oscillatory potentials, Thesis, University of Texas at Austin, 1979.

    Google Scholar 

  4. A. Devinatz, The existence of wave operators for oscillating potentials, J. Math. Phys. (to appear).

    Google Scholar 

  5. J. Dollard and C. Friedman, Existence of the Moller wave operators for \(V\left( r \right) = \lambda {r^{ - \beta }}\sin \left( {\mu {r^\alpha }} \right)\), Ann. Phys. 111 (1978) 251–266.

    Article  MathSciNet  MATH  Google Scholar 

  6. V. Enss, Asymptotic completeness for quantum mechanical potential scattering, Comm. Math. Phys. 61 (1978) 285–29.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Erdelyi, Asymptotic solutions of differential equations with transition points on singularities J. Math. Phys.(1960), 16–26.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Erdelyi, Asymptotic Expansions, Dover Publications, New York, 1956.

    MATH  Google Scholar 

  9. K.O. Friedrichs, Spectral theory of operators in Hilbert Space, Springer-Verlag, 1973.

    Book  MATH  Google Scholar 

  10. T. Kato, Perturbation Theory for Linear Operators, Springer- Verlag, 1966 and 1976.

    MATH  Google Scholar 

  11. T. Kato, Scattering theory and perturbation of continuous spectra, Actes, Congres Intern. Math. 1970, Tome 1, 135–140.

    Google Scholar 

  12. R.E. Langer, On the asymptotic solutions of ordinary differential equations with an application to Bessel functions of large order, Trans, Amer. Math. Soc., 33 (1931) 23–64.

    Article  MathSciNet  Google Scholar 

  13. R.E. Langer, The asymptotic solutions of ordinary linear differential equations of the second order with special reference to a turning point, Trans. Amer. Math., 67 (1949) 461–490.

    Article  MATH  Google Scholar 

  14. K. Mochizuki and J. Uchiyami, Radiation conditions and spectral theory for 2-body Schrödinger operators with “oscillating” long range potentials I, J. Math. Kyoto Univ. 18-2 (1978) 377–408.

    Google Scholar 

  15. F.W.T. Olver, Asymptotics and Special Functions, Academic Press, 1978.

    Google Scholar 

  16. Pauli Lectures on Physics, O.P. Enz, editor, Vol. 5» Wave Mechanics, The MIT Press (1977). See Section 27, The WKB - method.

    Google Scholar 

  17. M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. IV, Analysis of Operators, Academic Press 1978. See Example 1 in Section XIII. 13.

    Google Scholar 

  18. P. Rejto, On the resolvents of a family of non-self adjoint operators, Lett. Math. Phys. 1 (1976) 111–118.

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Rejto, An application of the third order JWKB - approximation method to prove absolute continuity I. The construction. Helv. Phys. Acta. 50 (1977), 479–494. Part II. The estimates,…, 495–508.

    Google Scholar 

  20. P. Rejto, Uniform estimates for the resolvent kernels for the parts of the Laplacian, Univ. Minn. Tech. Summ. Report, 1970.

    Google Scholar 

  21. Y. Saito, Spectral Representation for Schrödinger Operators with Long-Range Potentials, Springer-Verlag Lecture Notes in Mathematics, 727, (1979).

    Google Scholar 

  22. Y. Sibuya, Global Theory of a Second Order Linear Differential Equation with-a Polynomial Coefficient, North-Holland/American Elsevier, 1975.

    MATH  Google Scholar 

  23. W. Wasov, Asymptotic Expansions for Ordinary Differential Equations, Wiley-Interscience, 1965.

    Google Scholar 

  24. J. Weidmann, Zur Spectraltheorie von Sturm-Llonville-Operatoren, Math. Zeit., 98 (1967), 268–302.

    Article  MathSciNet  MATH  Google Scholar 

  25. D. White, Scattering theory for oscillatory potentials, Thesis, Northwestern University, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Devinatz, A., Rejto, P. (1981). Schrödinger Operators with Oscillating Potentials. In: Gustafson, K.E., Reinhardt, W.P. (eds) Quantum Mechanics in Mathematics, Chemistry, and Physics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3258-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3258-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3260-2

  • Online ISBN: 978-1-4613-3258-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics