On a Generalized Weyl-Von Neumann Converse Theorem

  • M. Seddighin
  • K. Gustafson


For two bounded selfadjoint operators A and A + B with the same essential spectra, there exists a unitary operator U such that B − (UAU* − A) is compact (Weyl-Von Neumann). More generally, an operator B in B(H) is compact iff σe (A + B) = σe (A) for all A ∈ B(H) (Gustafson-Weidmann), and in fact one needs only σ(A + B) ∩ σ (A) not empty for all A ∈ B(H) (Dyer, Porcelli, Rosenfeld). Aiken (Is. Math. J., 1976) and Zemanek (Studia Math., to appear) have studied the question of when for an arbitrary Banach algebra with identity the last condition guarantees that B is in some proper two-sided ideal. We give new results for this question, including a number of examples.


Compact Operator Banach Algebra Essential Spectrum Weyl Algebra Proper Ideal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. Gustafson, Weyl’s Theorems, Proc. Oberwolfach Conf. on Linear Operators and Approximation, 1971, International Series of Numerical Mathematics, 20, Birkhauser-Verlag (1972), 80–93.Google Scholar
  2. [2]
    H. Weyl, Über beschränkte quadratische Formen, deren Differenz Vollsteting ist, Rend. cric. Math Palermo (1909)., 373–392.Google Scholar
  3. [3]
    J. Von Neumann, Charakterissierung des spektrums eienes integral operators, Actualites Sci. Indust. 229 (1935), 1–20.Google Scholar
  4. [4]
    K. Gustafson and J. Weidmann, On the essential spectrum, J. Math. Anal. Applic, 25 (1969), 121–127.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    J. Zèmannek, Spectral characterization of two sided ideals in Banach algebras (to appear).Google Scholar
  6. [6]
    G. Aiken, Ph.D. dissertation, Louisiana State University, Baton Rouge, 1972.Google Scholar
  7. [7]
    G. Aiken, A problem of Dyer, Porcelli, and Rosenfeld, Israel J. Math., vol. 25, Nos. 3–4 (1976), 191–197.MathSciNetCrossRefGoogle Scholar
  8. [8]
    J. Dyer, P. Porcelli, and M. Rosenfeld, Spectral characterization of two sided ideals in B(H), Israel J. Math. 10 (1971), 26–31.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    C.E. Rickart, General Theory of Banach Algebras, D. Von Nostrand, Princeton (1960).MATHGoogle Scholar
  10. [10]
    E.F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, Heidelberg 1973.MATHGoogle Scholar
  11. [11]
    M. Naimark, Normed Rings, Nordhoff, Groningen, Netherlands (1959).MATHGoogle Scholar
  12. [12]
    M. Rosenbloom, On the operator equation BX − XA = Q, Duke Math. J. 23, (1956), 263–270.MathSciNetCrossRefGoogle Scholar
  13. [13]
    M. Seddighin, Ph.D. dissertation, University of Colorado at Boulder, to appear.Google Scholar
  14. [14]
    K. Gustafson, R.D. Goodrich, B. Misra, Irreversibility and Stochasticity of Chemical Processes, these proceedings.Google Scholar
  15. [15]
    I. Segal, The group ring of a locally compact group I, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 348–352.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • M. Seddighin
    • 1
    • 2
  • K. Gustafson
    • 1
    • 2
  1. 1.Department of MathematicsUniversity of ColoradoBoulderUSA
  2. 2.Mashad UniversityUSA

Personalised recommendations