On a Generalized Weyl-Von Neumann Converse Theorem

  • M. Seddighin
  • K. Gustafson


For two bounded selfadjoint operators A and A + B with the same essential spectra, there exists a unitary operator U such that B − (UAU* − A) is compact (Weyl-Von Neumann). More generally, an operator B in B(H) is compact iff σe (A + B) = σe (A) for all A ∈ B(H) (Gustafson-Weidmann), and in fact one needs only σ(A + B) ∩ σ (A) not empty for all A ∈ B(H) (Dyer, Porcelli, Rosenfeld). Aiken (Is. Math. J., 1976) and Zemanek (Studia Math., to appear) have studied the question of when for an arbitrary Banach algebra with identity the last condition guarantees that B is in some proper two-sided ideal. We give new results for this question, including a number of examples.


Assure Convolution Boulder 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. Gustafson, Weyl’s Theorems, Proc. Oberwolfach Conf. on Linear Operators and Approximation, 1971, International Series of Numerical Mathematics, 20, Birkhauser-Verlag (1972), 80–93.Google Scholar
  2. [2]
    H. Weyl, Über beschränkte quadratische Formen, deren Differenz Vollsteting ist, Rend. cric. Math Palermo (1909)., 373–392.Google Scholar
  3. [3]
    J. Von Neumann, Charakterissierung des spektrums eienes integral operators, Actualites Sci. Indust. 229 (1935), 1–20.Google Scholar
  4. [4]
    K. Gustafson and J. Weidmann, On the essential spectrum, J. Math. Anal. Applic, 25 (1969), 121–127.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    J. Zèmannek, Spectral characterization of two sided ideals in Banach algebras (to appear).Google Scholar
  6. [6]
    G. Aiken, Ph.D. dissertation, Louisiana State University, Baton Rouge, 1972.Google Scholar
  7. [7]
    G. Aiken, A problem of Dyer, Porcelli, and Rosenfeld, Israel J. Math., vol. 25, Nos. 3–4 (1976), 191–197.MathSciNetCrossRefGoogle Scholar
  8. [8]
    J. Dyer, P. Porcelli, and M. Rosenfeld, Spectral characterization of two sided ideals in B(H), Israel J. Math. 10 (1971), 26–31.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    C.E. Rickart, General Theory of Banach Algebras, D. Von Nostrand, Princeton (1960).MATHGoogle Scholar
  10. [10]
    E.F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, Heidelberg 1973.MATHGoogle Scholar
  11. [11]
    M. Naimark, Normed Rings, Nordhoff, Groningen, Netherlands (1959).MATHGoogle Scholar
  12. [12]
    M. Rosenbloom, On the operator equation BX − XA = Q, Duke Math. J. 23, (1956), 263–270.MathSciNetCrossRefGoogle Scholar
  13. [13]
    M. Seddighin, Ph.D. dissertation, University of Colorado at Boulder, to appear.Google Scholar
  14. [14]
    K. Gustafson, R.D. Goodrich, B. Misra, Irreversibility and Stochasticity of Chemical Processes, these proceedings.Google Scholar
  15. [15]
    I. Segal, The group ring of a locally compact group I, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 348–352.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • M. Seddighin
    • 1
    • 2
  • K. Gustafson
    • 1
    • 2
  1. 1.Department of MathematicsUniversity of ColoradoBoulderUSA
  2. 2.Mashad UniversityUSA

Personalised recommendations