Skip to main content

Progress Curves in Enzyme Kinetics: Design and Analysis of Experiments

  • Chapter
Kinetic Data Analysis

Abstract

Three shortcomings in progress curve analysis are discussed, and solutions or at least optimal strategies to overcome these problems are presented. (i) Systematic deviations in the progress curve data due to errors in the initial concentrations are taken into account in a linear approach by a proper weighting matrix in the parameter optimization. A transformation matrix, derived from the weighting matrix, leads to uncorrelated errors when applied to the data. The statistical tools developed for independent measurements can thus be applied to the transformed data. (ii) Model development by progress curve analysis is very cumbersome, since a progress curve does not reflect clearly the properties of the kinetics by visual inspection. Furthermore, the integration of the rate law leads to long computation times. These problems can be alleviated by determining the rates from the derivatives of a functional approximation of the progress curves. After developing a model using the rates, parameter refinement can be performed by fitting the original progress curve data. This procedure has the further advantage that optimization using the rate data is much less sensitive to the initial parameter estimates. (iii) The lack of inference from the visual inspection of progress curves also affects their experimental design. Methods mentioned in the literature that are applicable to the design of initial rate experiments, are extended for progress curves. The best results are obtained with a discrimination function that includes the statistical expectations of the minimum sum of squares.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Michaelis, L. and Menten, M.L. (1913) Biochem. Z. 49, 333–369.

    CAS  Google Scholar 

  2. Markus, M. and Plesser, Th. (1976) Biochem. Soc. Trans. 4, 361–364.

    CAS  Google Scholar 

  3. Haiwachs, W. (1978) Biotechnol. Bioeng. 20, 281–285.

    Article  Google Scholar 

  4. Yun, S.L. and Suelter, C.H. (1977) Biochim. Biophys. Acta, 480, 1–13.

    CAS  Google Scholar 

  5. Orsi, B.A. and Tipton, K.F. (1979) In “Methods in Enzymology” (S.P. Colowick and N.O. Kaplan, eds.) Vol. 63, pp. 159–183, Academic Press, New York.

    Google Scholar 

  6. Quiroga, O.D., Gottifredi, J.C., Mercado Fuentes, L. and de Castillo, M.E.C. (1977) Lat. am. j. chem. eng. appl. chem. 7, 89–101.

    CAS  Google Scholar 

  7. Garfinkel, L., Kohn, M.C. and Garfinkel, D. (1977) CRC Crit. Rev. Bioeng. 2, 329–361.

    CAS  Google Scholar 

  8. Boiteux, A., Markus, M., Plesser, Th. and Hess, B. (1980) In “Kinetic Data Analysis: Design and Analysis of Enzyme and Pharmacokinetic Experiments” (L. Endrenyi, ed.) pp. 341–352, Plenum, New York.

    Google Scholar 

  9. Garfinkel, D., Marbach, C.B. and Shapiro, N.Z. (1977) Ann. Rev. Biophys. Bioeng. 6, 525–542.

    Article  CAS  Google Scholar 

  10. Balcolm, J.K. and Fitch, W.M. (1970) J. Biol. Chem. 245, 1637–1647.

    Google Scholar 

  11. Cornish-Bowden, A.J. (1972) Biochem. J. 130, 637–639.

    CAS  Google Scholar 

  12. Elmore, D.T., Kingston, A.E. and Shields, D.B. (1963) J. Chem. Soc. London, 2070–2078.

    Google Scholar 

  13. Sørenson, T.S. and Schack, P. (1972) In “Analysis and Simulation of Biochemical Systems” (H.C. Hemker and B. Hess, eds.) pp. 169–195, North-Holland, Amsterdam.

    Google Scholar 

  14. Newman, P.F., Atkins, G.L. and Nimmo, I.A. (1974) Biochem. J. 143, 779–781.

    CAS  Google Scholar 

  15. Rao, C.R. (1973) “Linear Statistical Inference and its Applications”, Wiley, New York.

    Book  Google Scholar 

  16. Patengill, M.D. and Sands, D.E. (1979) J. Chem. Educ. 56, 244–247.

    Article  Google Scholar 

  17. Bartfai, T. and Mannervik, B. (1972) FEBS Lett. 26, 252–256.

    Article  CAS  Google Scholar 

  18. Reich, J.G., Winkler, J. and Zinke, I. (1974) Studia biophys. 43, 77–90.

    Google Scholar 

  19. Atkins, G.L. (1976) Biochem. Soc. Trans. 4, 357–361.

    CAS  Google Scholar 

  20. Boiteux, A., Hess, B., Malcovati, M., Markus, M. and Plesser, Th. (1976) X. Congress of Biochemistry, Hamburg, Abstract 07-4-101.

    Google Scholar 

  21. Markus, M., Plesser, Th., Boiteux, A. and Hess, B. (1978) 12th FEBS Meeting, Dresden, Abstract 2753.

    Google Scholar 

  22. Segel, I.H. (1975) “Enzyme Kinetics”, p. 275, Wiley, New York.

    Google Scholar 

  23. Hopper, M.J. (1979) “Harwell Subroutine Library. A Catalogue of Subroutines”. Computer Science and Systems Division, AERE Harwell, Oxfordshire, England.

    Google Scholar 

  24. Gear, G.W. (1971) “Numerical Initial Value Problems in Ordinary Differential Equations”, Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  25. Dixon, L.C.W., Gomulka, J. and Szegoe, G.P. (1975) In “Towards Global Optimization” (L.C.W. Dixon and G.P. Szegoe, eds. ) pp. 29–54.

    Google Scholar 

  26. Markus, M., Plesser, Th., Boiteux, A., Hess, B. and Malcovati, M. (1960) Biochem. J. 189, 421–433.

    Google Scholar 

  27. Reich, J G. (1970) FEBS Lett. 9, 245–251.

    Article  CAS  Google Scholar 

  28. Froment, G.F. (1975) AIChE Journal, 21, 1041–1056.

    Article  CAS  Google Scholar 

  29. Fedorov, V.V. and Pazman, A. (1968) Fortschr. Physik, 24, 325–355.

    Article  Google Scholar 

  30. Endrenyi, L. (1980) In “Kinetic Data Analysis: Design and Analysis of Enzyme and Pharmacokinetic Experiments”, (L. Endrenyi, ed.), pp. 137–167, Plenum, New York.

    Google Scholar 

  31. Kanyár, B. (1978) Acta Biochim. Biophys. Acad. Sci. Hung. 13, 153–160.

    Google Scholar 

  32. Pritchard, D.J. and Bacon, D.W. (1978) Chem. Eng. Sci. 33, 1539–1543.

    Article  CAS  Google Scholar 

  33. Hurst, R., Pincock, A. and Broekhoven, L.H. (1973) Biochim. Biophys. Acta, 321, 1–26.

    CAS  Google Scholar 

  34. Mannervik, B. (1975) Biosystems, 7, 101–119.

    Article  CAS  Google Scholar 

  35. Fedorov, V.V. (1972) “Theory of Optimal Experiments”, Academic Press, New York.

    Google Scholar 

  36. Retzlaff, G., Rust, G. and Waibel, J. (1975) “Statistische Versuchsplanung”, pp. 116–118, Verlag Chemie, Weinheim.

    Google Scholar 

  37. Draper, N.R. and Smith, H. (1967) “Applied Regression Analysis” Wiley, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Markus, M., Plesser, T. (1981). Progress Curves in Enzyme Kinetics: Design and Analysis of Experiments. In: Endrenyi, L. (eds) Kinetic Data Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3255-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3255-8_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3257-2

  • Online ISBN: 978-1-4613-3255-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics