A Survey of Invertebrate Metamorphosis

  • K. C. Highnam


Because of the great variety and numbers of insects, together with their undoubted economic importance, it is sometimes forgotten that they are rather atypical invertebrates. The majority of the invertebrate phyla are marine, some with representatives in fresh water and on land; many are sessile as adults, or are burrowers in the sea bottom, or lead otherwise more or less sedentary lives. The reproductive strategies of such invertebrates commonly include free-living larval stages, which may be of some developmental importance as feeding stages to build up sufficient reserves for the production of the adult body, or this role may be secondary to the more important functions of dispersal and site selection. Insects, on the other hand, have been preeminently terrestrial creatures from the Devonian onwards, and the majority of modern forms have highly mobile flying adults. Consequently, insect larvae have a more profound developmental role than their counterparts in other phyla, since the functions of habitat selection and dispersal have been transferred to the adult generation.


Imaginal Disc Larval Shell Ciliated Band Larval Tissue Holometabolous Insect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balinsky, B. I., 1970, An Introduction to Embryology, 3rd ed., Saunders, Philadelphia.Google Scholar
  2. Barnett, B. E., and Crisp, D. J., 1979, J. Mar. Biol. Assoc. U.K. 59: 581.CrossRefGoogle Scholar
  3. Barnett, B. E., Edwards, S. C., and Crisp, D. J., 1979, J. Mar. Biol. Assoc. U.K. 59: 575.CrossRefGoogle Scholar
  4. Barrington, E. J. W., 1979, Invertebrate Structure and Function, 2nd ed., Nelson, England.Google Scholar
  5. Bellon-Humbert, C., Thijssen, M. J. P., and van Herp, F., 1978, J. Mar. Biol. Assoc. U.K. 58: 851.CrossRefGoogle Scholar
  6. Berrill, N. J., 1961, Growth, Development and Pattern, Freeman, San Francisco.Google Scholar
  7. Cargo, D. G., 1979, Int. J. Invertebr. Reprod. 1: 279.Google Scholar
  8. Cheung, P. J., 1974, J. Exp. Mar. Biol. Ecol. 15: 223.CrossRefGoogle Scholar
  9. Costlow, J. D., 1963, Gen. Comp. Endocrinol. 3: 120.CrossRefGoogle Scholar
  10. Costlow, J. D., 1966a, Gen. Comp. Endocrinol. 7: 255.CrossRefGoogle Scholar
  11. Costlow, J. D.; 1966b, in: Some Contemporary Studies in Marine Science (H. Barnes, ed.), pp. 209–224, Hafner, Riverside, New Jersey.Google Scholar
  12. Crisp, D.J., 1974, in: Chemoreception in Marine Organisms (P. T. Grant and A. M. Mackie, eds.), pp. 177–265, Academic Press, New York.Google Scholar
  13. Crisp, D. J., 1976, in: Adaptations to Environment (R. C. Newell, ed.), pp. 83–124 Butter-worths, London.Google Scholar
  14. Donaldson, S., 1974, Biol. Bull. (Woods Hole) 147:573Google Scholar
  15. Ede, D. A., 1978, An Introduction to Developmental Biology, Blackie, London.Google Scholar
  16. Fretter, V., and Manly, R., 1977, J. Mar. Biol. Assoc. U.K. 57: 999.CrossRefGoogle Scholar
  17. Grant, P., 1978, Biology of Developing Systems, Holt, Rinehart, Winston, New York.Google Scholar
  18. Gurney, R., 1942, Larvae of Decapod Crustacea, Ray Society, London.Google Scholar
  19. Highnam, K. C., and Hill, L., 1977, The Comparative Endocrinology of the Invertebrates, 2nd ed., Arnold, London.Google Scholar
  20. Hughes, R. G., 1977, J. Mar. Biol. Assoc. U.K. 57: 641.Google Scholar
  21. Hyman, L. B., 1951, The Invertebrates, Volume II, McGraw-Hill, New York.Google Scholar
  22. Hyman, L. B., 1959, The Invertebrates, Volume V, McGraw-Hill, New York.Google Scholar
  23. Larman, V. N., and Gabbott, P. A., 1975, J. Mar. Biol. Assoc. U.K. 55: 183.CrossRefGoogle Scholar
  24. Little, G., 1969, Crustaceana, (Leiden) 17:69.Google Scholar
  25. McConaugha, J. R., 1979, Gen. Comp. Endocrinol. 37: 421.CrossRefGoogle Scholar
  26. Meadows, P. S., and Campbell, J. I., 1972, Adv. Mar. Biol. 10: 59.Google Scholar
  27. Rainbow, P. S., Ford, M. P., and Hepplewhite, I., 1979, J. Mar. Biol. Assoc. U.K. 59: 591.CrossRefGoogle Scholar
  28. Rao, R. K., Fingerman, S. W., and Fingerman, M., 1973, Comp, Biochem. Physiol. 44A: 1105.CrossRefGoogle Scholar
  29. Scheltema, R. S., 1974, Thalassia fugosl. 10: 263.Google Scholar
  30. Thompson, T. E., 1958, Philos. Trans. R. Soc. London 242: 1.CrossRefGoogle Scholar
  31. Thompson, T. E., 1962, Philos. Trans. R. Soc. London 245: 171.CrossRefGoogle Scholar
  32. Thorson, G., 1950, Biol. Rev. 25: 1.CrossRefGoogle Scholar
  33. Underwood, A. J., 1972, Mar. Biol. 17: 341.CrossRefGoogle Scholar
  34. Wigglesworth, V. B. 1954, The Physiology of Insect Metamorphosis, Cambridge University Press, London.Google Scholar
  35. Wigglesworth, V. B., 1959, The Control of Growth and Form, Cornell University Press, Ithaca, New York.Google Scholar
  36. Wigglesworth, V. B., 1965, The Principles of Insect Physiology, Methuen, London.Google Scholar
  37. Wigglesworth, V. B., 1967, Symp. Soc. Exp. Biol. 2: 1.Google Scholar
  38. Wigglesworth, V. B.,1970,Insect Hormones, Oliver Boyd,Edinburgh.Google Scholar
  39. Wigham, G. D., 1975, J. Mar. Biol. Assoc. U.K. 55: 45.CrossRefGoogle Scholar
  40. Wilson, D. P., 1932, Philos. Trans. R. Soc. London Ser B 221: 231.CrossRefGoogle Scholar
  41. Wilson, D. P., 1955, J. Mar. Biol. Assoc. U.K. 34: 531.CrossRefGoogle Scholar
  42. Wilson, D. P., 1968, J. Mar. Biol. Assoc. U.K. 48: 387.CrossRefGoogle Scholar
  43. Wilson, D. P., 1970, J. Mar. Biol. Assoc. U.K. 50: 1.CrossRefGoogle Scholar
  44. Wilson, D. P., 1977, J. Mar. Biol. Assoc. U.K. 57: 761.CrossRefGoogle Scholar
  45. Wilson, D. P., 1978, J. Mar. Biol. Assoc. U.K. 58: 467.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • K. C. Highnam
    • 1
  1. 1.Department of ZoologyThe UniversitySheffieldUK

Personalised recommendations