Advertisement

A New Approach to Equivalence in Quantum Logic

  • Roger M. Cooke
  • J. Hilgevoord

Abstract

Consider the double spin measurement for spin 1/2 particles shown in figure 1.

Keywords

Quantum Mechanic Equivalence Class Equivalence Relation Measurement Procedure Physical Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.W. Mackey, “Mathematical Foundations of Quantum Mechanics”, Reading, Mass. (1963).MATHGoogle Scholar
  2. 2.
    E.G. Beltrametti and G. Cassinelli, Logical and mathematical structures of quantum mechanics, Rivista del Nuovo Cimento 6, no. 3 (1976), pp. 321–405.MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    M.J. Maczynski, A remark on Mackey’s axiom system for quantum mechanics. Bull, de I’Acad. Pol, des Sciences, Serie des sciences, math., astr., et phys. XV, no. 3 (1967), pp. 568–587.Google Scholar
  4. 4.
    M.J. Maczynski, Boolean properties of observables in axiomatic quantum mechanics. Rep. Math. Phys. 2, no. 2 (1971), pp. 135–150.MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    C. Piron, “Foundations of Quantum Physics”, Reading, Mass. (1976).MATHGoogle Scholar
  6. 6.
    C. Piron, On the logic of quantum logic, J. Philos. Logic 6 (1977) pp. 481–484.MATHCrossRefGoogle Scholar
  7. 7.
    R. Cooke and J. Hilgevoord, Correspondence, equivalence and completeness, Epistemological Letters (March 1979), pp. 42–54.Google Scholar
  8. 8.
    R. Cooke and J. Hilgevoord, The algebra of physical magnitudes.Foundations of Physics 10 (1980), pp. 363–373.MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    F.J.A. Belinfante, “A Survery of Hidden Variable Theories”, Pergamon Press (1973), ch. 3.Google Scholar
  10. 10.
    C. Carola, “Propositions and Orthocomplementation in Quantum Logic”, (unpublished manuscript).Google Scholar
  11. 11.
    B. Mielnik, Quantum logic: is it necessarily orthocomplemented? in “Quantum Mechanics, Determinism, Causality and Particles”, M. Flato et al. eds., Reidel (1976), pp. 117–135.CrossRefGoogle Scholar
  12. 12.
    S. Bugajski, The inner language of operational quantum mechanics, (see this volume).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Roger M. Cooke
    • 1
  • J. Hilgevoord
    • 2
  1. 1.Department of PhilosophyTechnical University DelftNetherlands
  2. 2.Institute of Theoretical PhysicsUniversity of AmsterdamNetherlands

Personalised recommendations