An NMR Study of Solvent Interactions in a Paramagnetic System

  • R. M. Golding
  • R. O. Pascual
  • C. Suvanprakorn


The temperature dependence of the proton nmr spectra of dithiocarbamato iron(III) complexes is markedly solvent dependent. A study is made of the temperature dependence of the nmr shifts for the N-CH2 protons in tris(N,N-dibutyldithiocarbamato)iron(III) in acetone, benzene, carbon disulfide, chloroform, dimethylformamide, pyridine and some mixed solvents. This contribution shall outline first how the nmr shifts may be interpreted in terms of the Fermi contact interaction and the dipolar term in the multipole expansion of the interaction of the electron orbital angular momentum and the electron spin dipol-nuclear spin angular momentum. This analysis yields a direct measure of the effect of the solvent system on the environment of the transition metal ion. The results are analysed in terms of the crystal field environment of the transition metal ion with contributions from (a) the dithiocarbamate ligand (b) the solvent molecules and (c) the interaction of the effective dipole moment of the polar solvent molecule with the transition metal ion complex. The model yields not only an explanation for the unusual nmr results but gives an insight into the solvent-solute interactions in such systems.


Crystal Field Carbon Disulfide Solvent Interaction mUltipole Expansion Distortion Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. M. Golding, L. L. Kok, K. Lehtonen, and R. K. Nigam, Aust. J. Chem. 28: 1915 (1975).CrossRefGoogle Scholar
  2. 2.
    R. M. Golding, W. C. Tennant, C. R. Kanekar, and A. H. White, J. Chem. Phys. 45: 2688 (1966).CrossRefGoogle Scholar
  3. 3.
    R. M. Go1ding, W. C. Tennant, J. M. P. Bailey, and A. Hudson, J. Chem. Phys. 48: 764 (1968).CrossRefGoogle Scholar
  4. 4.
    R. M. Golding, B. D. Lukeman, and E. Sinn, J. Chem. Phys. 56: 4147 (1972).CrossRefGoogle Scholar
  5. 5.
    R. M. Golding, Pure Appl. Chem. 32: 123 (1972).CrossRefGoogle Scholar
  6. 6.
    W. D. Perry and R. S. Drago, J. Am. Chem. Soc. 93: 2183 (1971).CrossRefGoogle Scholar
  7. 7.
    R. M. Golding, Molec. Phys. 8: 561 (1964).CrossRefGoogle Scholar
  8. 8.
    R. J. Kurland and B. R. McGarvey, J. Magn. Reson. 2: 286 (1970)Google Scholar
  9. 9.
    R. M. Golding and L. C. Stubbs, J. Magn. Reson. 33: 627 (1979).Google Scholar
  10. 10.
    R. M. Golding, “Applied Wave Machanics”, Van Nostrand, London (1969)Google Scholar
  11. 11.
    R. M. Golding and H. J. Whitfield, Trans. Faraday Soc. 62: 1713 (1966).CrossRefGoogle Scholar
  12. 12.
    R. M. Golding, Molec. Phys. 12: 13 (1967).CrossRefGoogle Scholar
  13. 13.
    M. Das, R. M. Golding, and S. E. Livingstone, Transition Met. Chem. 3: 112 (1978).CrossRefGoogle Scholar
  14. 14.
    J. S. Griffith, “The theory of Transition Metal Ions”, Cambridge University Press, London (1961).Google Scholar
  15. 15.
    H. A. Bergen and R. M. Golding, Austr. J. Chem. 30: 2361 (1977).CrossRefGoogle Scholar
  16. 16.
    I. G. Dance and I. R. Miller, to be published.Google Scholar
  17. 17.
    G. L. Raston and A. H. White, J. Chem. Soc. 2405 (1975).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • R. M. Golding
    • 1
  • R. O. Pascual
    • 1
  • C. Suvanprakorn
    • 1
  1. 1.The University of New South WalesKensingtonAustralia

Personalised recommendations