Skip to main content

Insect Dietetics: Complexities of Plant-Insect Interactions

  • Chapter
Current Topics in Insect Endocrinology and Nutrition

Abstract

A phytophagous insect which can freely move from one place to another must locate a plant before attempting to feed upon it. Stimulated by Professor Gottfried Fraenkel’s historic paper (Fraenkel, 1959), much excellent work has been done on how insects locate hosts and are repelled by non-host species, often through the effects of various allelochemics. Still another aspect is how suitable the plant is to the insect once it has settled down to feed. The chosen plant must be .capable of supporting growth, development and reproduction, if it is to be a suitable host. The feeding insect must ingest food “that not only meets its nutritional requirements, but is also capable of being assimilated and converted into the energy and structural substances required for normal activity and development” (Beck, 1972; Beck and Reese, 1976). This concept, termed insect dietetics by Beck (1972), is thus considerably broader than classical nutrition which deals with specific nutrient requirements of a species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews, P., 1964, Estimation of the molecular weights of proteins by Sephadex gel-filtration, Biochem. J. 91: 222.

    PubMed  CAS  Google Scholar 

  • Baker, J. E., 1974, Influence of nutrients on the utilization of woolen fabric as a food for larvae of Attagenus megatoma (F.) (Coleoptera: Dermestidae ), J. Stored Prod. Res. 10: 155.

    Article  CAS  Google Scholar 

  • Baker, J. E., 1975, Protein utilization by larvae-the black carpet beetle, Attagenus megatoma, J. Insect Physiol. 21: 613.

    Article  CAS  Google Scholar 

  • Baker, J. E., 1976, Properties of midgut proteases in larvae of Attagenus megatoma, Insect Biochem. 6: 143.

    Article  CAS  Google Scholar 

  • Baker, J. E., 1977a, Growth and development of the black carpet beetle on the laboratory diet, Ann. Entomol. Soc. Amer. 70: 296.

    Google Scholar 

  • Baker, J. E., 1977b, Substrate specificity in the control of digestive enzymes in larvae of the black carpet beetle, J. Insect Physiol. 23: 749.

    Article  CAS  Google Scholar 

  • Baker, J. E., 1978, Midgut clearance and digestive enzyme levels in larvae of Attagenus megatoma following removal from food, l. Insect Physiol. 24: 133.

    Article  CAS  Google Scholar 

  • Barr, A. J., Goodnight, J. H., SaIl, J. P., and Helwig, J. T., 1976, A user's guide to SAS 76, SAS Institute, Raleigh, North Carolina.

    Google Scholar 

  • Davies, R. C., Riordan, J. F., Auld, D. S., and Valle, B. L., 1968, Kinetics of carboxypeptidase A. I. Hydrolysis of carbobenzoxylglycyl- L- phenylalanine, benzoylglycyl-L-phenyla1anine, and hippuryl-DL-B-phenyllactic acid by metal substituted and acetylated carboxypeptidases, Biochemistry 7: 1090.

    Article  PubMed  CAS  Google Scholar 

  • Davis, B. J., 1962, Disc electrophoresis. II. Method and application to human serum proteins, Ann. N.Y. Acad. Sci. 121: 404.

    Article  Google Scholar 

  • Erlanger, B. F., Edel, F., and Cooper, A. G., 1966, The action of chymotrypsin on two new chromogenic substrates, Arch. Biochem. Biophys. 115: 206.

    Google Scholar 

  • Erlanger, B. F., Kokowsky, N., and Cohen, W., 1961, The preparation and properties of two new chromogenic substrates of trypsin, Arch. Biochem. Biophys. 95: 271.

    Google Scholar 

  • Folk, E., Piez, K. A., Carroll, W. R., and Gladner, J. A., 1960, Carboxypeptidase B. IV. Purification and characterization of the porcine enzyme, ~. BioI. Chern. 235: 2272.

    Google Scholar 

  • Fraenkel, G., and Blewett, M., 1946, The dietetics of the clothes moth, Tineola bisselliella Hum., ~. Exp. BioI. 22: 156.

    Google Scholar 

  • Giebel, W., Zwilling, R., and Pfleiderer, G., 1971, The evolution of endopeptidases - XII. The proteolytic enzymes of the honeybee ( Apis mellifica L. ), Comp. Biochem. Physiol. 38B: 197.

    Google Scholar 

  • Gold, A. M., 1965, Sulfonyl fluorides as inhibitors of esterases III. Identification of serine as the site of sulfonylation on phenylmethane-sulfonyl a-chymotrypsin, Biochemistry 4: 897.

    Google Scholar 

  • Gooding, R. H., 1972, Digestive processes of haematophagous insects II. Trypsin from the sheep ked Melophagous ovinus (L.) (Hippoboscidae, Diptera) and its inhibition by mammalian sera, Comp. Biochem. Physiol. 43B:8l5.

    Google Scholar 

  • Gooding, R. H., and Huang, C. T., 1969, Trypsin and chymotrypsin from the beetle Pterostichus melanarius, Insect Physiol. 15: 325.

    Article  CAS  Google Scholar 

  • Gooding, R. H., and Rolseth, B. M., 1976, Digestive processes of haemotophagous insects. XI. Partial purification and some properties of six proteolytic enzymes from the tsetse fly Glossina morsitans morsitans Westwood (Diptera: Glossinidae ), Can-J. Zool. 54: 1950.

    Google Scholar 

  • Himmelhoch, S. R., 1969, Leucine aminopeptidase: A zinc metalloenzyme, Arch. Biochem. Biophys. 134: 597.

    Google Scholar 

  • Hummel, B. C. W., 1959, A modified spectrophotometric determination of chymotrypsin, trypsin, and thrombin, Can. Biochem. Physio1. 37: 1393.

    Article  CAS  Google Scholar 

  • Knecht, M., Hagenmaier, H. E., and Zebe, E., 1974, The proteases in the gut of the locust, Locusta migratoria, J. Insect Physiol. 20: 461.

    Google Scholar 

  • Kunitz, M., 1947, Crystalline soybean trypsin inhibitor. II. General properties, 2. General Physiol. 30: 291.

    Article  CAS  Google Scholar 

  • Kunz, P. A., 1978, Resolution and properties of the proteinases in adult Aedes aegypti ( L. ), Insect Biochem. 8: 169.

    Google Scholar 

  • Lee, H., and Wilson, I. B., 1971, Enzymic parameters: Measurement of V and Km, Biochim. Biophys. Acta 242: 519.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., 1951, Protein measurement with the Folin phenol reagent, J. Biol. Chern. 193: 265.

    Google Scholar 

  • Mallis, A., Burton, B. T., and Miller, A. C., 1962, The attraction of salts and other nutrients to the larvae of fabric insects,

    Google Scholar 

  • J. Econ. Entomol. 55: 351.

    Google Scholar 

  • Marks, N., Datta, R. K., and Lajtha, A., 1968, Partial resolution of brain arylamidases and aminopeptidases, J. BioI. Chern. 243: 2882.

    Google Scholar 

  • McClure, W. 0., Neurath, H., and Walsh, K. A. 1964, The reaction of carboxypeptidase A with hippuryl-DL-S-phenyllactate, Biochemistry 3: 1897.

    CAS  Google Scholar 

  • Miller, J. W., Kramer, K. J., and Law, J. H., 1974, Isolation and partial characterization of the larval midgut trypsin from the tobacco hornworm, Manduca sexta, Johannson (Lepidoptera: Sphingidae ), Comp. Biochem. Phy;iOl. 48B: 117.

    Google Scholar 

  • Morihara, K., aka, T., and Tsuzki, H., 1967, Multiple proteolytic enzymes of Streptomyces fradiae. Production, isolation,and preliminary characterization, Biochim. Biophys. Acta. 139:382. Ornstein, L., 1962, Disc electrophoresis. I. Background and theory, Ann. N.Y.Acad. Sci. 121: 321.

    Google Scholar 

  • Powning, R., and Irzykiewicz, H., 1962, Studies on the digestive proteinase of clothes moth larvae (Tineola bisselliella) II. Digestion of wool and other substrates by Tineola proteinase and comparison with trypsin, J. Insect Physiol. 8: 275.

    Article  CAS  Google Scholar 

  • Racusen, D., 1967, Double-disc electrophoresis of proteins, Nature 213: 922.

    Article  PubMed  CAS  Google Scholar 

  • Schwert, G. W., and Takenaka, Y., 1955, A spectrophotometric determination of trypsin and chymotrypsin, Biochim. Biophys. Acta 16: 570.

    Google Scholar 

  • Shaw, E., 1967, Site-specific reagents for chymotrypsin and trypsin, in: "Methods in Enzymology," Vol. 2, Colowick, S. P., and Kaplan, N. O. ed., Academic Press, New York.

    Google Scholar 

  • Wachsmuth, E. D., Fritze, I., and Pfleiderer, G., 1966, An aminopeptidase occurring in pig kidney. I. An improved method of preparation, physical and enzymic properties, Biochemistry 5: 169.

    Google Scholar 

  • Walsh, K. A., and Neurath, H., 1964, The primary sequence of bovine trypsinogen. Proc. Natl. Acad. Sci. 52: 884.

    Google Scholar 

  • Walsh, K. A., and Wilcox, P. E., 1970, Serine proteases, in: "Methods of Enzymology," Vol. 19, S. P. Colowick and N0. Kaplan,ed., Academic Press, New York.

    Google Scholar 

  • Ward, C. W., 1975a, Resolution of proteases in the keratinolytic larvae of the webbing clothes moth, Aust. I. BioI. Sci. 28: 1.

    CAS  Google Scholar 

  • Ward, C. W., 1975b, Properties and specificity of the major metal chelator-sensitive proteinase in the keratinolytic larvae of the webbing clothes moth, Biochim. Biophys. Acta 384: 215.

    CAS  Google Scholar 

  • Ward, C. W., 1975c, Properties and specificity of a second metal chelator-sensitive proteinase in the keratinolytic larvae of the webbing clothes moth, Aust. 2. BioI. Sci. 28: 439.

    CAS  Google Scholar 

  • Ward, C. W., 1975d, Aminopeptidases in webbing clothes moth larvae. Properties and specificities of enzymes of highest electrophoretic

    Google Scholar 

  • mobility, Aust. 2. BioI. Sci. 28: 447.

    Google Scholar 

  • Waterhouse, D. F., 1952a, Studies on the digestion of wool by insects. VII. Some features of digestion in three species of J. Sci. Res. 5B: 444.

    Google Scholar 

  • Waterhouse, D. F., 1952b, Studies on the digestion of wool by insects. VI. The pH and oxidation-reduction potential of the alimentary canal of the clothes moth larvae (Tineola bisselliella (Rumm.)), Aust. 1. Sci. Res. 5B: 178.

    Google Scholar 

  • Waterhouse, D. F., 1958, Wool digestion and mothproofing, in: "Advances in pest control research," Vol. 2, R. L. Metcalf, ed., Interscience Publishers, Inc., New York.

    Google Scholar 

  • Yang, Y. J., and Davies, D. M., 1971, Trypsin and chymotrypsin during metamorphosis in Aedes aegypti and properties of the chymotrypsin, 1. Insect Physiol. 17: 117.

    Article  CAS  Google Scholar 

  • Zwilling, R., Medugorac, I., and Mella, K., 1972, The evolution of endopeptidases - XIV. Non-tryptic cleavage specificity of a BAEE-hydrolyzing enzyme (S-protease) from Tenebrio molitor, Compo Biochem. Physiol. 43B:4l9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Reese, J.C. (1981). Insect Dietetics: Complexities of Plant-Insect Interactions. In: Bhaskaran, G., Friedman, S., Rodriguez, J.G. (eds) Current Topics in Insect Endocrinology and Nutrition. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3210-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3210-7_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3212-1

  • Online ISBN: 978-1-4613-3210-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics