Dietary Modulation of Glucose-6-Phosphate Dehydrogenase and 6-Phosphogluconate Dehydrogenase in Drosophila

  • B. W. Geer
  • J. H. Williamson
  • D. R. Cavener
  • B. J. Cochrane

Abstract

The pentose phosphate cycle (pentose shunt) derives substrate from glycolysis and the initial portion of the pathway consists of reactions that convert glucose-6-phosphate to ribulose-5-phosphate. This portion of the pathway, termed the oxidative pentose shunt pathway, generates NADPH in the reactions catalyzed by glucose-6-phosphate dehydrogenase (G6PD; EC 1.1.1.49) and 6phosphogluconate dehydrogenase (6PGD; EC 1.1.1.44). Flux through the oxidative shunt pathway is closely correlated with the rate of lipogenesis (Wise and Ball, 1964) and the primary purpose of the pathway ostensibly is the formation of NADPH for lipid synthesis (Fig. 1).

Keywords

Pyruvate Folic Acid Fructose NADH Choline 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arinze, J. C, Mistry, S. P. 1971, Activities of some biotin enzymes and certain aspects of gluconeogenesis during biotin deficiency, Comp. Biochem. Physiol. 38B: 285–294.Google Scholar
  2. Bewley, G. C, Lucchesi, J. C. 1975, Lethal effects of low and “null”activity alleles of 6-phosphogluconate dehydrogenase in Droso£hila, Genetics 79: 451.PubMedGoogle Scholar
  3. Bijlsma, R. 1978, Polymorphism at the G6PD and 6PGD loci in Drosophila melanogaster. II. Evidence for interaction in fitness, Genet. Res. Camb. 31: 227.Google Scholar
  4. Bijlsma, R, Van Delden, W. 1977, Polymorphism at the G6PD and 6PGD loci in Drosophila melanogaster. I. Evidence for selection in experimental populations, Genet. Res. Camb. 30: 221.Google Scholar
  5. Bischoff, W. L. 1978, Ontogeny of sorbitol dehydrogenases in Drosophila melanogaster, Biochem. Genet. 16: 485.Google Scholar
  6. Bowman, J. T, Simmons, J. R. 1973, Gene modulation in Drosophila: dosage compensation of Pgd+ and Zw+ genes, Biochem. Genet. 10: 319.Google Scholar
  7. Cannistraro, V. J., Borack, L. I. Chase, T. 1979, Subunit structure and kinetic properties of L-S-hydroxyacid dehydrogenase of Drosophila, Biochim. Biophys. Acta 569: 1Google Scholar
  8. Cannistraro, V. J., Borack, L. I. Chase, T. 1979, Subunit structure and kinetic properties of L-S-hydroxyacid dehydrogenase of Drosophila, Biochim. Biophys. Acta 569: 1Google Scholar
  9. Cavener, D. R, Clegg, M. T. 1978, Dynamics of correlated genetic systems. IV. Multi locus effects of ethanol stress environments, Genetics 90: 629.Google Scholar
  10. Cavener, D. R, Clegg, M. T. 1978, Dynamics of correlated genetic systems. IV. Multi locus effects of ethanol stress environments, Genetics 90: 629.Google Scholar
  11. DeZwann, A, Marrewijk, W. J. A. 1973, Intercellular localization of pyruvate carboxylase, phosphoenol pyruvate carboxylase, phosphoenol pyruvate carboxykinase and malic enzyme, and the absence of glyoxylate cycle enzymes in the sea mussel ( Mylitus endulis L. ), Comp. Biochem. Physiol. 44B: l057.Google Scholar
  12. Fitch, W. W, Chaikoff, ~1960, Extent and patterns of adaptation of enzyme activities in livers of normal rats fed diets high in glucose and fructose 1.. BioI. Chern. 235: 554.Google Scholar
  13. Geer, B. W. 1963, A ribonucleic acid-protein relationship in Drosophila nutrition Exp. Zool. 154: 353.Google Scholar
  14. Geer, B. W. 1966, Utilization of D-amino acids for growth by Drosophila melanogaster larvae 1. Nutr. 90: 31.Google Scholar
  15. Geer, B. W. 1972, The functions of choline and carnitine during spermatogenesis in Drosophila, in: “Insect and Mite Nutrition,”J. G. Rodriguez, ed., North-Holland Publishing Co., AmsterdamGoogle Scholar
  16. Geer, B. W., Bowman, J. T. Simmons, J. R. 1974, The pentose shunt in wild-type and glucose-6-phosphate dehydrogenase deficient Drosophila melanogaster, J. Exp. Zool. 187: 77.Google Scholar
  17. Geer, B. W., Kamiak, S. N., Kidd, K. R., Nishimura, R. A. Yemm, S. J. 1976, Regulation of the oxidative NADP-enzyme tissue levels in Drosophila melanogaster. I. Modulation by dietary carbohydrate and lipid, I. Exp. Zool. 195: 15.Google Scholar
  18. Geer, B. W., Krochko, D. Williamson, J. H. 1979a, Ontogeny cell distribution and the physiological role of NADP-malic enzyme in Drosophila me1anogaster, Biochem. Genet. 17: 867.Google Scholar
  19. Geer, B. W., Lindel, D. L. Lindel, D. M. 1979b, The relationship of the oxidative pentose shunt pathway to lipid synthesis in Drosophila melanogaster, Biochem. Genet. 17: 881.Google Scholar
  20. Geer, B. W, Vovis, G. F. 1965, The effects of choline and related compounds on the growth and development of Drosophila melanogaster. J. Exp. Zool. 158: 223.Google Scholar
  21. Geer, B. W., Woodward, C. G. Marshall, S. D. 1978, Regulation of the oxidative NADP-enzyme tissue levels in Drosophila melanogaster. II. The biochemical basis of dietary carbohydrate and D-glycerate modulation, J. Exp. Zool. 203: 391.Google Scholar
  22. Gerasimova, T. I, Ananjev, E. V. 1972, Cytogenetical localization of structural gene Pgd for 6-phosphogluconate dehydrogenase in Drosophila melanogaster., Drosophila Inform. Serve 48: 93.Google Scholar
  23. Gibson, J. 1970, Enzyme flexibility in Drosophila melanogaster, Nature 227: 959.PubMedCrossRefGoogle Scholar
  24. Giesel, J. T. 1976, Biology of a duplicate gene system with glucose 6-phosphate dehydrogenase activity in Drosophila melanogaster: genetic analysis and differences in fitness components and reaction to environmental parameters among Zw genotypes, Biochem. Genet. 14: 823.Google Scholar
  25. Gumaa, K. A., McLean, P. Greenbaum, A. L. 1971, Compartmentalization in relation to metabolic control in liver, Essays in Biochemistry 7: 39.Google Scholar
  26. Gvozdev, V. A., Birstein, F. J. Faizullin, L. Z. 1970, Gene dependent regulation of 6-phosphogluconate dehydrogenase activity of Drosophila melanogaster, Drosophila Inform. Serve 45: 163.Google Scholar
  27. Gvozdev, V. A., Gerasimova, T. I., Kogan, G. L. Braslavskaya, o. Y. 1976, Role of the pentose phosphate pathway in theGoogle Scholar
  28. metabolism of Drosophila melanogaster elucidated by mutations affecting glucose 6-phosphate and 6-phosphogluconate dehydrogenases, FEBS Lett. 64:85.Google Scholar
  29. Gvozdev, V., Arasimova, T. I., Kogan, G. L. Rosovsky, J. M. 1977, Investigations on the organization of genetic loci in Drosophila melanogaster: lethal mutations affecting 6-phosphogluconate dehydrogenase and their suppression, Molec. Gen. Genet. 153: 191.Google Scholar
  30. Gvozdev, V. A., Gostimsky, S. A., Gerasimova, T. I., Dubrovskaya, E. S. Braslavskaya, o. Y. 1975, Fine genetic structure of the 2D3-2F5 region of the X-chromosome of Drosophila me1anogaster, Mo1ec. Gen. Genet. 141: 269.Google Scholar
  31. Hughes, M. B, Lucchesi, J. 1977, Genetic rescue of a lethal "null”activity allele of 6-phosphogluconate dehydrogenase in Drosophila me1anogaster, Science 197: 1114.CrossRefGoogle Scholar
  32. Hughes, M. B, Lucchesi, J. C. 1978, Dietary rescue of a lethal “null”activity allele of 6-phosphog1uconate dehydrogenase in Drosophila melanogaster, Biochem. Genet. 21: 1.Google Scholar
  33. Johnson, B. C, Sassoon, H. R. 1967, Studies on the induction of liver glucose-6-phosphate dehydrogenase in the rat, Advances in Enzyme Regulation 5: 93.PubMedCrossRefGoogle Scholar
  34. Kazazian, H. H., Jr., Young, W. J. Childs, B. 1965, X-linked-6-phosphog1uconate dehydrogenase in Drosophila: Subunit associations, Science 150: 1601.Google Scholar
  35. Keepler, D, Decker, K. 1974, Glycogen determination with amyloglucosidase, in: “Methods of Enzymatic Analysis,”Vol. 2., H. U. Bergmeyer, ed., Academic Press, New' York.Google Scholar
  36. Kelly, D. S., Watson, J. J., Mack, D.O. Johnson, B. C. 1975, Glucose-6-phosphate dehydrogenase is not induced in the mammalian liver by dietary carbohydrate, Nutr. Rep. Int. 12: 121.Google Scholar
  37. Krebs, H. A, Eggleston, L. V. 1974, The regulation of the pentose phosphate cycle in rat liver, Advances in Enzyme Regulation 12: 421.PubMedCrossRefGoogle Scholar
  38. Krebs, H. A, Eggleston, L. V. 1974, The regulation of the pentose phosphate cycle in rat liver, Advances in Enzyme Regulation 12: 421.PubMedCrossRefGoogle Scholar
  39. Lee, C. Y., Langley, C. H. Burkhart, J. 1978, Purification and molecular weight determination of glucose-6-phosphate dehydrogenase and malic enzyme from mouse and Drosophila, Analyt. Biochem. 86: 697.Google Scholar
  40. Lewis, E. G. 1960, A new standard food medium, Drosophila Inform. Servo 34: 117.Google Scholar
  41. Lucchesi, J. C., Hughes, M. B. Ceer, B. W. 1979, Genetic control of the pentose phosphate pathway enzymes in Drosophila, Current Topics in Cellular Regulation 15: 143.Google Scholar
  42. Parr, C. W. 1956, Inhibition of phosphoglucose isomerase, Nature 178: 1401.PubMedCrossRefGoogle Scholar
  43. Parsons, P. A, King, S. B. 1977, Ethanol: larval discrimination between two Drosophila sibling species, Experientia 33: 898.PubMedCrossRefGoogle Scholar
  44. Potter, V. C. Ono, T. 1961, Enzyme patterns in rat liver and Morris hepatoma 5123 during metabolic transition, Cold Spring Harbor Symp. Quant. BioI. 26: 355.Google Scholar
  45. Sang, J. H. 1956, The quantitative nutritional requirements of Drosophila me1anogaster, J. Exp. BioI. 33: 45.Google Scholar
  46. Sang, J. H. 1979, The nutritional requirements of Drosophila, in: “The Genetics and Biology of Drosophila,”Vol. 2a, M. Ashburner and T. R. F. Wright, eds.,. Academic Press, New York.Google Scholar
  47. Seecof, R. L., Kaplan, W. D., Futch, D. G. 1969, Dosage compensation for enzyme activities in Drosophila melanogaster, Proc. Nat. Acad. Sci. ( U.S.A. ) 62: 528.Google Scholar
  48. Steel, M. W., Young, J., Childs, B. 1968, Glucose 6-phosphate dehydrogenase in Drosophila melanogaster: starch gel electrophoretic variation due to molecular instability, Biochem. Genet. 2: 159.Google Scholar
  49. Steele, M. W., Young, W. J. Childs, B. 1969, Genetic regulation of glucose-6-phosphate dehydrogenase activity in Drosophila melanogaster, Biochem. Genet. 3: 359.Google Scholar
  50. Taketa, K. Pogell, B. M. 1966 The effect of palmityl coenzyme A on glucose-y-phosphate dehydrogenase and other enzymes. Biol. Chern. 241: 720.Google Scholar
  51. Tepperman, H. M, Tepperman, J. 1958, The hexose monophosphate shunt and adaptive hyperlipogenesis, Diabetes 7: 478.PubMedGoogle Scholar
  52. Tepperman, H. M, Tepperman, J. 1965, Effect of saturated fat diets on rat liver NADP-linked enzymes, Amer. J. Physiol. 209: 773.Google Scholar
  53. Van Delden, W., Kamping, A., van Dijk, M. 1975, Selection at the alcohol dehydrogenase locus in Drosophila melanogaster, Experientia 31: 418.PubMedCrossRefGoogle Scholar
  54. Williamson, J. H., Geer, B. W., Krochko, D. 1980a, Glucose-6phosphate dehydrogenase from Drosophila melanogaster. I. Purification and properties of the dimeric form, Comp.Google Scholar
  55. Biochem. Physio1., in pr es s;Google Scholar
  56. Williamson, J. H., Krochko, D., Bentley, M. M., Thwaites, T. 1980b, Purification and properties of NADP-malic enzyme from Men Drosophila melanogaster, in preparation.Google Scholar
  57. Williamson, J. H., Krochko, D., Geer, B. W. 1980c, 6-Phosphogluconate dehydrogenase from Drosophila me1anogaster. I. Purification and Properties of the A-isozyme, Biochem. Genet. 18: 87.Google Scholar
  58. Wise, E. M., Ball, E. G. 1964, Malic enzyme and lipogenesis, Proc. Nat. Acad. Sci. ( U.S.A. ) 52: 1255.Google Scholar
  59. Young, W. J. 1966. X-linked electrophoretic variation in 6phosphogluconate dehydrogenase in Drosophila melanogaster, J. Heredity 57: 58.Google Scholar
  60. Young, W. J., Porter, J. E., and Childs, B., 1964, Glucose-6-phosphate dehydrogenase in Drosophila: X-linked electrophoretic variants, Science 143:140.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • B. W. Geer
    • 1
  • J. H. Williamson
    • 2
  • D. R. Cavener
    • 3
  • B. J. Cochrane
    • 4
  1. 1.Department of BiologyKnox CollegeGalesburg,USA
  2. 2.Department of BiologyUniversity of CalgaryCalgaryCanada
  3. 3.Department of Molecular and Population GeneticsUniversity of GeorgiaAthensUSA
  4. 4.Department of ZoologyUniversity of North CarolinaChapel Hill,USA

Personalised recommendations