ESR Studies of Calcium- and Proton-Induced Phase Separations in Phosphatidylserine—Phosphatidylcholine Mixed Membranes

  • Shun-ichi Ohnishi
  • Satoru Tokutomi


A wealth of information on biological systems has been obtained by spin labels based on the sensitive response of the electron spin resonance spectrum to the rate and mode of rotational motions of the labels. The technique has been used to detect changes in the local environments of spin labels attached to biomolecules, which reflect conformational changes of the biomolecules. Spin-labeled lipids give detailed and useful information on anisotropic motions in model as well as biological membranes. Flexibility of the lipid alkyl chains can be easily measured and used as a convenient measure of the “fluidity” of membranes. When spin labels are attached rigidly to biomolecules, the spin label motion directly represents rotational motion of the biomolecules as a whole. Saturation transfer ESR spectroscopy is powerful in this area of study since it extends the time limit of sensitive detection of rotational motions to 10−3 sec (see, for example, Berliner, 1976, 1979).


Mole Fraction Phase Separation Spin Label Induce Phase Separation Lateral Phase Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barton, P. G., 1968, J. Biol. Chem. 243:3884.PubMedGoogle Scholar
  2. Berliner, L. J. (ed.), 1976, Spin Labeling: Theory and Applications, Academic Press, New York and London.Google Scholar
  3. Berliner, L. J. (ed.), 1979, Spin Labeling II: Theory and Applications, Academic Press, New York and London.Google Scholar
  4. Birrell, G. B., and Griffith, O. H., 1976, Biochemistry 15:2925.PubMedCrossRefGoogle Scholar
  5. Blok, M. C., van der Neut-Kok, E. C. M, and van Deenen, L. L. M., 1975, Biochim. Biophys. Acta 406:187.PubMedCrossRefGoogle Scholar
  6. Boggs, J. M., Moscarello, M. A., and Papahadjopoulos, D., 1977, Biochemistry 26:5420.CrossRefGoogle Scholar
  7. Chapman, D., 1973, in: Form and Function of Phospholipids (G. B. Ansell, J. N. Hawthorne, and R. M. C. Dawson, eds.), pp. 117–142, Elsevier Publishing Company, Amsterdam.Google Scholar
  8. Cook, A. M, Low, E, and Ishinaga, M., 1972, Nature (London), New Biol. 239:150.Google Scholar
  9. Devaux, P, and McConnell, H. M., 1972, J. Am. Chem. Soc. 94:4475.PubMedCrossRefGoogle Scholar
  10. Ebashi, S., Endo, M., and Ohtsuki, I., 1969, Q. Rev. Biophys. 2:351.PubMedCrossRefGoogle Scholar
  11. Finer, E. G., and Darke, A., 1974, Chem. Phys. Lipids 12:1.PubMedCrossRefGoogle Scholar
  12. Galla, H. J., and Sackman, E, 1975, Biochim. Biophys. Acta 401:509.PubMedCrossRefGoogle Scholar
  13. Gerritsen, W. J., Verkleij, A. J., and van Deenen, L. L. M., 1979, Biochim. Biophys. Acta 555:26.PubMedCrossRefGoogle Scholar
  14. Hauser, H., Darke, A., and Phillips, M. C., 1976, Eur. J. Biochem. 62:335.PubMedCrossRefGoogle Scholar
  15. Hauser, H., Finer, E. G., and Darke, H., 1977, Biochem. Biophys. Res. Commun. 76:261.CrossRefGoogle Scholar
  16. Hendrickson, H. S., and Fullington, J. G., 1965, Biochemistry 4:1599.PubMedCrossRefGoogle Scholar
  17. Ito, T., and Ohnishi, S., 1974, Biochim. Biophys. Acta 352:29.PubMedCrossRefGoogle Scholar
  18. Ito, T., Ohnishi, S, Ishinaga, M, and Kito, M., 1975, Biochemistry 14:3064.CrossRefGoogle Scholar
  19. Jacobson, K., and Papahadjopoulos, D., 1975, Biochemistry 14:152.PubMedCrossRefGoogle Scholar
  20. Kakiuchi, S., Yamazaki, R., Teshima, Y., Uenishi, K., and Miyamoto, E., 1975, Biochem. J. 164:109.Google Scholar
  21. Koter, M., de Kruijff, B., and van Deenen, L. L. M., 1978, Biochim. Biophys. Acta 514:255.PubMedCrossRefGoogle Scholar
  22. Lee, A. G., 1977, Biochim. Biophys. Acta 472:285.PubMedGoogle Scholar
  23. Lin, Y. M, Lin, Y. P., and Cheung, W. Y., 1974, J. Biol. Chem. 249:4943.PubMedGoogle Scholar
  24. Lorand, L., Weissmann, L. B., Epel, D. L., and Brunner-Lorand, J., 1976, Proc. Natl. Acad. Sci. USA 73:4479.PubMedCrossRefGoogle Scholar
  25. Maeda, T., and Ohnishi, S, 1974, Biochem. Biophys. Res. Commun. 60:1509.PubMedCrossRefGoogle Scholar
  26. Maeda, T., Asano, A., Ohki, K., Okada, Y., and Ohnishi, S., 1975, Biochemistry 24:3736.CrossRefGoogle Scholar
  27. McLaughlin, S. G. A., Szabo, G., and Eisenman, G., 1971, J. Gen. Physiol. 58:667.PubMedCrossRefGoogle Scholar
  28. Monger, J. L, and Svec, P., 1972, Br. J. Pharm. 46:141.Google Scholar
  29. Neuhaus, F. C., and Korkes, S., 1958, Biochem. Prep. 6:15.Google Scholar
  30. Newton, C., Pangborn, W., Nir, S., and Papahadjopoulos, D., 1978, Biochim. Biophys. Acta 506:281.PubMedCrossRefGoogle Scholar
  31. Ohnishi, S., 1975, Adv. Biophys. 8:35.Google Scholar
  32. Ohnishi, S., and Ito, T., 1973, Biochem. Biophys. Res. Commun. 51:132.PubMedCrossRefGoogle Scholar
  33. Ohnishi, S., and Ito, T., 1974, Biochemistry 13:881.CrossRefGoogle Scholar
  34. Overbeek, J. Th. G., 1952, in: Colloid Science (H. R. Kruyt, ed.), Elsevier, Amsterdam.Google Scholar
  35. Papahadjopoulos, D, 1977, J. Colloid Interface Sci. 58:459.CrossRefGoogle Scholar
  36. Papahadjopoulos, D., Vail, W. J., Newton, C., Nir, S., Jacobson, K., Poste, G., and Lazo, R., 1977, Biochim. Biophys. Acta 465:519.Google Scholar
  37. Pinto da Silva, P., 1972, J. Cell Biol 53:111.Google Scholar
  38. Portis, A., Newton, C., Panghorn, W., and Papahadjopoulos, D., 1979, Biochemistry 18:780.PubMedCrossRefGoogle Scholar
  39. Scandeila, C. J., Devaux, P., and Monnell, H. M., 1972, Proc. Natl Acad. Sci. USA 69:2056.CrossRefGoogle Scholar
  40. Seimiya, T., and Ohki, S., 1973, Biochim. Biophys. Acta 298:546.PubMedCrossRefGoogle Scholar
  41. Stoeckenius, W., Schulman, J. H., and Prince, L. M, 1960, Kolloid Z. 169:170.CrossRefGoogle Scholar
  42. Sun, S. T., Hsang, C. C., Day, E. P., and Ho, J. T., 1979, Biochim. Biophys. Acta 557:45.PubMedCrossRefGoogle Scholar
  43. Takai, Y., Kishimoto, A., Iwasa, Y., Kawahara, Y., Mori, T., and Nishizuka, Y., 1979, J. Biol Chem. 254:3692.PubMedGoogle Scholar
  44. Tobias, J. M., Agin, D. P., and Powlowski, P., 1962, J. Gen. Physiol 45:989.PubMedCrossRefGoogle Scholar
  45. Tokutomi, S., Eguchi, G., and Ohnishi, S., 1979, Biochim. Biophys. Acta 555:78.Google Scholar
  46. Tokutomi, S., Ohki, K., and Ohnishi, S., 1980, Biochim. Biophys. Acta 596:192.PubMedCrossRefGoogle Scholar
  47. Tokutomi, S., Lew, R., and Ohnishi, S., 1981, Biochim. Biophys. Acta 643 (in press).Google Scholar
  48. Träuble, H., 1977, in: Proceedings of Nobel Foundation Symposium 34, Structure of Biological Membranes (S. Abrahamson and L. Pascher, eds.), pp. 509–550, Plenum Press, New York and London.Google Scholar
  49. Träuble, H, and Sackman, E, 1972, J. Am. Chem. Soc. 94:4499.PubMedCrossRefGoogle Scholar
  50. van Dijck, P. W. M., de Kruijff, B., Verkleij, A. J, van Deenen, L. L. M, and de Gier, J, 1978, Biochim. Biophys. Acta 512:84.PubMedCrossRefGoogle Scholar
  51. Verkleij, A. J., Zwaal, R. F. A., Roelofsen, B., Comfurius, P., Kasteijn, D., and van Deenen, L. L. M, 1973, Biochim. Biophys. Acta 323:178.PubMedCrossRefGoogle Scholar
  52. White, D. A., 1973, in: Form and Function of Phospholipids, (G. B. Ansell, J. N. Hawthorne, and R. M. C. Dawson, eds.), pp. 441–482, Elsevier Publishing Company, Amsterdam.Google Scholar
  53. Williams, R. J. P., 1972, Physiol Chem. & Physics 4:421.Google Scholar
  54. Wu, S. H., and Monnell, H. M., 1973, Biochem. Biophys. Res. Commun. 55:484.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Shun-ichi Ohnishi
    • 1
  • Satoru Tokutomi
    • 1
  1. 1.Department of Biophysics, Faculty of ScienceKyoto UniversityKyoto 606Japan

Personalised recommendations