Methods for Delivering Tracers

  • George F. Alheid
  • Stephen B. Edwards
  • Stephen T. Kitai
  • Melburn R. Park
  • Robert C. SwitzerIII


The delivery of chemical tracers into the central nervous system is often an essential, although sometimes problematic aspect of modern tract-tracing experiments. In this chapter we shall concentrate on the most common methods of tracer delivery: small injections of a solution, either using a microsyringe or through glass micropipettes, or extracellular of intracellular iontophoresis. It should be kept in mind, however, that other methods of delivering tracers may be more suitable for certain types of problems. Tracers have been injected into the periphery—for instance, into muscle in order to label motoneurons in the spinal cord or brain stem (Kristenson, 1970; Kristenson et al., 1971; Kristenson and Olsson, 1973)—and they have been applied to the cut or crushed ends of peripheral nerves (Kristenson, 1975; lies and Mulloney, 1971; Tweedle, 1978) and deposited in naturally closed structures such as the eye (LaVail and LaVail, 1972, 1974). In cases where diffusion from the site of deposition is not a serious limitation, tracers may be applied directly to the surface of the brain, either as a liquid or by means of absorbant pellets or wicks that have been soaked in the tracer solution (Arbuthnott, 1969; Descarries and Lapierre, 1973; Held and Young, 1969; Weiss and Holland, 1967).


Current Source Pressure Injection Cocoa Butter Glass Micropipette Tracer Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abols, 1. A., and Basbaum, A. L, 1979, The posterior pretectal nucleus: Evidence for a direct projection to the inferior olive of the cat, Neurosci. Lett. 13: 111–116.CrossRefGoogle Scholar
  2. Aghajanian, G. K., and Wang, R. Y., 1977, Habenular and other midbrain afferents demonstrated by a modified retrograde tracing technique. Brain Res. 122: 229–242.PubMedCrossRefGoogle Scholar
  3. Ahlsen, G., Lindstrom, S., and Sybirska, E., 1978, Subcortical axon collaterals of principal cells in the lateral geniculate body of the cat. Brain Res. 156: 106–109.PubMedCrossRefGoogle Scholar
  4. Arbuthnott, G. W., 1969, Noradrenaline uptake into cerebral cortex: A histochemical study, J. Neurochem. 16: 1599–1604.CrossRefGoogle Scholar
  5. Barrett, J., and Whitlock, D. G., 1973, Technique for believing glass microelectrodes, in: Intracellular Staining in Neurobiology ( S. B. Kater and C. Nicholsen, eds.), pp. 297–299, Springer-Verlag, Berlin.Google Scholar
  6. Beckstead, R. M., 1979a, An autoradiographic examination of corticocortical and subcortical projections of the mediodorsal projection (prefrontal) cortex in the rat, J. Comp. Neurol. 184: 43–62.PubMedCrossRefGoogle Scholar
  7. Beckstead, R. M., 1979b, Convergent prefrontal and nigral projections to the striatum of the rat, Neurosci. Lett. 123: 59–64.CrossRefGoogle Scholar
  8. Brown, K. T., and Flaming, D. G., 1974, Beveling of fine micro pipette electrodes by a rapid precision method, Science 185: 693–695.PubMedCrossRefGoogle Scholar
  9. Brown, K. T., and Flaming, D. G., 1975, Instrumentation and technique for beveling fine micropipette electrodes. Brain Res. 86: 172–180.PubMedCrossRefGoogle Scholar
  10. Brown, K. T., and Flaming, D. G., 1977, New microelectrode techniques for intracellular work in small cells, Neuroscience 2: 813–827.CrossRefGoogle Scholar
  11. Brown, K. T., and Flaming, D. G. 1979, Technique for precision beveling of relatively large micropipettes, J. Neurosci. Methods 1: 25–34.CrossRefGoogle Scholar
  12. Brown, P. B., Maxfield, B. W., and Moraff, H., 1973, Electronics for Neurobiologists, M.I.T. Press, Cambridge, Massachusetts.Google Scholar
  13. Bunney, B. S., and Aghajanian, G. K., 1976, The precise localization of nigral afferents in the rat as determined by a retrograde tracing technique. Brain Res. 117: 423–435.PubMedCrossRefGoogle Scholar
  14. Bunt, A., and Haschke, R. H., 1978, Features of foreign proteins affecting their retrograde transport in axons of the visual system, J. Neurocytol. 7: 665–678.CrossRefGoogle Scholar
  15. Bunt, A. H., Haschke, R. H., Lund, R. D., and Calkins, D. F., 1976, Factors affecting retrograde axonal transport of horseradish peroxidase in the visual system, Brain Res. 102: 152–155.PubMedCrossRefGoogle Scholar
  16. Bures, J., Buresova, O., and Huston, J., 1976, Techniques and Basic Experiments for the Study of Brain and Behavior, Elsevier, Amsterdam.Google Scholar
  17. Cedarbaum, J. M., and Aghajanian, G. K., 1978, Afferent projections to the rat locus coeruleus as determined by a retrograde tracing technique, J. Comp. Neurol. 178: 1–16.CrossRefGoogle Scholar
  18. Chowdhury, T. K., 1969, Techniques of intracellular injection, in Glass Microelectrodes ( M. La Vallee, O. F. Schanne, and N. C. Herbert, eds.), pp. 404–423, John Wiley & Sons, New York.Google Scholar
  19. Corson, D. W., Goodman, S., and Fein, A., 1979, An adaptation of the jet stream micropipette beveler, Science 205: 1302.PubMedCrossRefGoogle Scholar
  20. Davis, R. E., and Agranoff, B. W., 1977, Microimplantation of 3H-proline on a single bead of ion-exchange resin, Brain Res. 124: 341–346.PubMedCrossRefGoogle Scholar
  21. Descarries, L., and Lapierre, Y., 1973, Noradrenergic axon terminals in the cerebral cortex of rat. I. Radioautographic visualization after topical application of d, 1 3H-norepinephrine, Brain Res. 51: 141–160.PubMedCrossRefGoogle Scholar
  22. Dreyer, F., and Peper, K., 1974, lontophoretic applications of acetylcholine: Advantages of high resistance micropipettes in connection with an electronic current pump, Pfluegers Arch. 348: 263–272.Google Scholar
  23. Edwards, S. B., and Henkel, C. K., 1978, Superior colliculus connections with the extraocular motor nuclei in the cat, J. Comp. Neurol. 179: 451–468.CrossRefGoogle Scholar
  24. Edwards, S. B., and Shalna, E. J., 1974, Microinjector for use in the autoradiographic neuroanatomical tracing method, Pharmacol. Biochem. Behav. 2: 111–113.PubMedCrossRefGoogle Scholar
  25. Eide, E., Illert, M., and Tanaka, R., 1976, Injection of horseradish peroxidase solution in calibrated volumes (nanolitre) into the spinal cord, Neurosci. Lett. 2: 51–56.PubMedCrossRefGoogle Scholar
  26. Fein, H., 1966, Passing current through recording glass micro–pipette electrodes, IEEE Trans. Biomed. Eng. 13: 211–212.PubMedCrossRefGoogle Scholar
  27. Gallager, D. W., and Pert, A., 1978, Afferents to brain stem nuclei (brain stem raphe, nucleus reticularis pontis caudalis and nucleus giganto cellularis) in the rat as demonstrated by microiontophoretically applied horseradish peroxidase. Brain Res. 144: 257–275.PubMedCrossRefGoogle Scholar
  28. Geller, H. M., and Woodward, D. J., 1972, An improved constant current source for micro-iontophoretic drug application studies, Electroencephalogr. Clin. Neurophysiol. 33: 430–432.PubMedCrossRefGoogle Scholar
  29. Graybiel, A. M., and Devor, M. A., 1974, A microelectrode delivery technique for use with horseradish peroxidase, Brain Res. 68: 167–173.PubMedCrossRefGoogle Scholar
  30. Griffin, G., Watkins, L. R., and Mayer, D. V., 1979, HRP pellets and slow release gels: Two new techniques for greater localization and sensitivity. Brain Res. 168: 595–601.PubMedCrossRefGoogle Scholar
  31. Guglielmotti, V., 1979, A thermally controlled microinjector, Stain Technol. 54: 151–157.PubMedGoogle Scholar
  32. Held, J., and Young, I. J., 1969, A comparative study of the somato-axonal flow of protein in the feline hypoglossal and vagus nerves, Exp. Brain Res. 8: 150–162.Google Scholar
  33. Henkel, C. K., and Edwards, S. B., 1978, The superior colliculus control of pinna movements in the cat: Possible anatomical connections, J. Comp. Neurol. 182: 763–776.CrossRefGoogle Scholar
  34. Herkenham, M., 1978, The connections of the nucleus reuniens thalami: Evidence for a direct thalamo–hippocampal pathway in the rat, J. Comp. Neurol. 177: 589–610.CrossRefGoogle Scholar
  35. Herkenham, M., 1979, The afferent and efferent connections of the ventromedial thalamic nucleus in the rat, J. Comp. Neurol. 183: 487–518.CrossRefGoogle Scholar
  36. Herkenham, M., and Nauta, W. J. H., 1979, Efferent connections of the habenula nuclei in the rat, J. Comp. Neurol. 187: 19–48.CrossRefGoogle Scholar
  37. Hoenig, S. A., and F. L. Payne, 1973, How to Build and Use Electronic Devices without Frustration, Panic, Mountains of Money, or an Engineering Degree, Little, Brown & Co., Boston.Google Scholar
  38. Holland, V. R., Saunders, B. C., Rose, F. L., and Walpole, A. L., 1974, A safer substitute for benzidine in detection of blood. Tetrahedron 30: 3299–3302.CrossRefGoogle Scholar
  39. Iles, J. F., and Mulloney, B., 1971, Procion yellow staining of cockroach motor neurons without the use of microelectrodes, Brain Res. 30: 397–400.PubMedCrossRefGoogle Scholar
  40. Jones, E. G., Coulter, J. D., and Hendry, S. H. C., 1978, Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys, J. Comp. Neurol 181: 291–348.CrossRefGoogle Scholar
  41. Kallstrom, Y., and Lindstrom, S., 1978, Simple device for pressure injections of horseradish peroxidase into small central neurons. Brain Res. 156: 102–105.PubMedCrossRefGoogle Scholar
  42. Kater, S. B., and Nicholson, C., 1973, Intracellular Staining in Neurobiology, Springer-Verlag, Berlin and New York.Google Scholar
  43. Kater, S., Nicholson, C., and Davis, W. J., 1973, Guide to intracellular staining techniques, in: Intracellular Staining in Neurobiology ( S. B. Kater and C. Nicholson, eds.), pp. 307–325, Springer-Verlag, Berlin and New York.Google Scholar
  44. Kawamura, S., and Diamond, I. T., 1978, The laminar origin of descending projections from the cortex to the thalamus in Topaia glis, Brain Res. 153: 333–339.PubMedCrossRefGoogle Scholar
  45. Kawamura, S., Fukushima, N., Hattori, S., and Tashiro, T., 1978, A ventral lateral geniculate nucleus projection to the dorsal thalamus and the midbrain in the cat, Exp. Brain Res. 34: 95–106.Google Scholar
  46. Kelly, J. P., and Gilbert, C. D., 1975, The projections of different morphological types of ganglion cells in the cat retina, J. Comp. Neurol 163: 65–80.CrossRefGoogle Scholar
  47. Koike, H., Eisenstadt, M., and Schwartz, J. H., 1972, Axonal transport of newly synthesized acetylcholine in an identified neuron of aplysia, Res. 37: 152–159.Google Scholar
  48. Kristenson, K., 1970, Transport of fluorescent protein tracer in peripheral nerves. Acta Neuropathol (Berlin) 16: 293–300.CrossRefGoogle Scholar
  49. Kristenson, K., 1975, Retrograde axonal transport of protein tracers, in: The Use of Axonal Transport for Studies of Neuronal Connectivity ( W. M. Cowan and M. Cuenod, eds.), Elsevier, Amsterdam.Google Scholar
  50. Kristenson, K., and Olsson, Y., 1973, Diffusion pathways and retrograde axonal transport of protein tracers in peripheral nerves. Prog. Neurobiol. 1: 85–109.CrossRefGoogle Scholar
  51. Kristenson, K., Olsson, Y., and Sjostrand, J., 1971, Axonal uptake and retrograde transport of exogenous proteins in the hypoglossal nerve. Brain Res. 32: 399–406.CrossRefGoogle Scholar
  52. Lasek, R., Joeseph, B. S., and Whitlock, D. G., 1968, Evaluation of a radiautographic neuroanatomical tracing method. Brain Res. 8: 319–336.PubMedCrossRefGoogle Scholar
  53. La Vail, J. H., and La Vail, M. M., 1972, Retrograde axonal transport in the central nervous system, Science 176: 1416–1417.CrossRefGoogle Scholar
  54. La Vail, J. H., and La Vail, M. M., 1974, The retrograde intraaxonal transport of horseradish peroxidase in the check visual system: A light and electron microscope study, J. Comp. Neurol. 157: 303–358.CrossRefGoogle Scholar
  55. La Vallee, M., Schanne, O. F., and Herbert, N. C., 1969, Glass Microelectrodes, John Wiley & Sons, New York.Google Scholar
  56. Luiten, P. G. M., 1975, The horseradish peroxidase technique applied to the teleostan nervous system, Brain Res. 89: 181–186.PubMedCrossRefGoogle Scholar
  57. Luiten, P. G. M., and Van der Pers, J. N. C., 1977, The connection of the trigeminal and facial motor nuclei in the brain stem of the carp (Cyprinus carpio 1.) as revealed by anterograde and retrograde transport of horseradish peroxidase, J. Comp. Neurol. 174: 575–590.CrossRefGoogle Scholar
  58. Lynch, G., Deadwyler, S., and Gall, C., 1974, Labeling of central nervous system neurons with extracellular recording microelectrodes. Brain Res. 66: 337–341.CrossRefGoogle Scholar
  59. Maekawa, K., and Takeda, T., 1979, Origin of descending afferents to the rostral part of the dorsal cap of inferior olive which transfers contralateral optic activities to the flocculus. A horseradish peroxidase study, Brain Res. 172: 393–405.PubMedCrossRefGoogle Scholar
  60. McCaman, R. E., McKenna, D. G., and Ono, J. K., 1977, A pressure system for intracellular and extracellular ejections of picoliter volumes. Brain Res. 136: 141–147.PubMedCrossRefGoogle Scholar
  61. Myers, R. D., 1974, Handbook of Drug and Chemical Stimulation of the Brain, Van Nostrand Reinhold Co., London.Google Scholar
  62. Nastuk, W. L., 1964, Physical Techniques in Biological Research, Vol. V. Electrophysiological Methods, Part A, Academic Press, New York.Google Scholar
  63. Norgren, R., 1976, Taste pathways to hypothalamus and amygdala, J. Comp. Neurol. 166: 17–30.CrossRefGoogle Scholar
  64. Ogden, T. E., Citron, M. C., and Pierantoni, R., 1978, The jet stream microbeveler: An inexpensive way to bevel ultrafine glass micropipettes. Science 201: 469.PubMedCrossRefGoogle Scholar
  65. Ottersen, O. P., and Ben-Ari, Y., 1978a, Pontine and mesencephalic afferents to the central nucleus of the amygdala of the rat, Neurosci. Lett. 8: 329–334.PubMedCrossRefGoogle Scholar
  66. Ottersen, O. P., and Ben-Ari, Y., 1978b, Demonstration of a heavy projection of midline thalamic neurons upon the lateral nucleus of the amygadala of the rat, Neurosci. Lett. 9: 147–152.PubMedCrossRefGoogle Scholar
  67. Ottersen, O. P., and Ben-Ari, Y., 1979, Afferent connections to the amygdaloid complex of the rat and cat. 1. Projections from the thalamus, J. Comp. Neurol. 187: 401–424.CrossRefGoogle Scholar
  68. Phillipson, O. T., 1978, Afferent projections to A10 dopaminergic neurons in the rat as shown by the retrograde transport of horseradish peroxidase, Neurosci. Lett. 9: 353–359.PubMedCrossRefGoogle Scholar
  69. Phillipson, O. T., 1979, Afferent projection to the ventral tegmental area of Tsai and interfascicular nucleus: A horseradish peroxidase study in the rat, J. Comp. Neurol. 187: 117–144.CrossRefGoogle Scholar
  70. Pitman, R. M., Tweedle, C. D., and Cohen, M. J., 1972, Branching of central neurons: Intracellular cobalt injections for light and electron microscopy. Science 176: 412–414.PubMedCrossRefGoogle Scholar
  71. Price, P., Fisher, A. W. F., and Redstone, P., 1977, A simple apparatus for injection of small (nanolitre) volumes of horseradish-peroxidase, Neurosci. Lett. 6: 21–25.PubMedCrossRefGoogle Scholar
  72. Remler, M. P., Selverston, A. I., and Kennedy, D., 1968, Lateral giant fibers of crayfish: Location of somata by dye injection. Science 162: 281–283.PubMedCrossRefGoogle Scholar
  73. RoBards, M. J., 1979, Somatic neurons in the brainstem and neocortex projecting to the external nucleus of the inferior colliculus: An anatomical study in the opossum, J. Comp. Neurol. 184: 547–566.CrossRefGoogle Scholar
  74. Sakai, M., Sakai, H., and Woody, C. D., 1978, Intracellular staining of cortical neurons by pressure microinjections and recovery by core biopsy, Exp. Neurol. 58: 138–144.CrossRefGoogle Scholar
  75. Schubert, P., and Holländer, H., 1975, Methods for delivery of tracers to the central nervous system, in: The Use of Axonal Transport for Studies of Neuronal Connectivity ( W. M. Cowan and M. Cuenod, eds.), Elsevier, Amsterdam.Google Scholar
  76. Schubert, P., Kreutzberg, G. W., and Lux, H. D., 1972, Use of microelectrophoresis in the autoradiographic demonstration of fiber projections. Brain Res. 39: 274–277.PubMedCrossRefGoogle Scholar
  77. Shaw, M. L., and Lee, D. R., 1973, Micropipette sharpener with audio and hydraulic readouts, J. Appl. Physiol. 34: 523–524.PubMedGoogle Scholar
  78. Simon, A., LeMoal, M., and Galas, A., 1979, Efferents and afferents of the ventral tegmental A-10 region studied after local injection of ®H-leucine and horseradish peroxidase, Brain Res. 178: 17–40.PubMedCrossRefGoogle Scholar
  79. Spencer, H. J., Jones, R. K., and Lynch, G., 1978, The use of somatougal transport of horseradish peroxidase for tract tracing and cell labeling, in: Methods in Physiological Psychology, Vol. II, Neuroanatomical Research Techniques ( R. T. Robertson, ed.). Academic Press, New York and London.Google Scholar
  80. Tasaki, I., Tsukahara, Y., Ito, S., Wayner, M. J., and Yu, W. Y., 1968, A simple, direct and rapid method for filling microelectrodes, Physiol. Behav. 3: 1009–1010.CrossRefGoogle Scholar
  81. Thompson, R. F., and Patterson, M. M., 1973, Methods in Physiological Psychology, Vol. 1. Bioelectric Recording Techniques, Part A, Cellular Processes and Brain Potentials, Academic Press, New York and London.Google Scholar
  82. Thompson, R. F., and Patterson, M. M., 1974, Methods in Physiological Psychology, Vol. I. Bioelectric Recording Techniques, Part C, Receptor and Effector Processes, Academic Press, New York and London.Google Scholar
  83. Tweedle, G. D., 1978, Single cell staining techniques, in: Methods in Physiological Psychology, Vol. II, Neuroanatomical Research Techniques ( R. T. Robertson, ed.). Academic Press, New York and London.Google Scholar
  84. Wakefield, G., and Shonnard, N., 1979, Observations of HRP labeling following injection through a chronically implanted cannula. A method to avoid diffusion into injured fibers. Brain Res. 168: 221–226.PubMedCrossRefGoogle Scholar
  85. Weiss, P., and Holland, Y., 1967, Neuronal dynamics and axonal flow. II. The olfactory nerve as a model test object, Proc. Natl. Acad. Sei. USA 57: 259–264.Google Scholar
  86. Woodward, W. R., and Lindström, S. H., 1977, A potential screening technique for neurotransmitters in the GNS: Model studies in the cat spinal cord. Brain Res. 137: 37–52.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • George F. Alheid
    • 1
  • Stephen B. Edwards
    • 2
  • Stephen T. Kitai
    • 3
  • Melburn R. Park
    • 3
  • Robert C. SwitzerIII
    • 4
  1. 1.Department of NeurologyUniversity of Virginia School of MedicineCharlottesvilleUSA
  2. 2.Department of AnatomyUniversity of Virginia School of MedicineCharlottesvilleUSA
  3. 3.Department of AnatomyMichigan State UniversityEast LansingUSA
  4. 4.Comparative Animal Research LaboratoryOak RidgeUSA

Personalised recommendations