Polymer Blends pp 265-280 | Cite as

Mechanical Properties of Multicomponent Polymeric Materials: A Predictive Classification of Binary Systems

  • R. Greco


Multicomponent polymeric materials, including polymer blends, block, graft and random copolymers, interpenetrating and semi-interpenetrating networks, gradient polymers or combinations of the above listed systems, are becoming, recently more and more interesting from both practical and scientific points of view1–3. In fact, it is possible to obtain on the one hand new plastic materials (oriented towards well definite end-uses) just optimizing specific properties coming from different polymers. This result can be obtained by various processing procedures: 1) melt-mixing two or more homopolymers or copolymers (blends); 2) polymerizing two or more monomers (copolymers)1; 3) forming one or two networks (semi or interpretating networks or gradient polymers). On the other hand, the concept of the compatibility of two or more high molecular weight substances is a very attractive scientific subject. In fact, even for the simplest case of two amorphous rubbery components in a blend, the segmental compatibility between the two species is a rare event, since generally the entropy gain in the mixing is very low4. However a few couples of polymers, exhibiting strong attractive interactions can show a good compatibility or at least a good homogeneity (very fine domains of the dispersed phase).


Impact Strength Random Copolymer Isotactic Polypropylene Thermoplastic Elastomer Ternary Blend 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. J. MacKnight, J. Stoelting and F, E. Karansk, “Multicomponent polymeric systems” Advances in Chemistry Series 99, Ed. R. F. Gould, Am. Chem. Soc., 1971.Google Scholar
  2. 2.
    H. Sperling “Recent advances in polymer blends. Graft and Blocks” Plenum Press, New York, 1974.Google Scholar
  3. 3.
    J. A. Manson and L. H. Sperling, “Polymer Blends and Composites” Plenum Press, New York, 1976.Google Scholar
  4. 4.
    R. Paul and S. Newman “Polymer Blends”, Academic Press, London, 1978.Google Scholar
  5. 5.
    R. Greco and E. Martuscelli, La Chimica & l’Industria, 61 (4), 298 (1979).Google Scholar
  6. 6.
    R. Greco, Tecnopolimeri e Resine, 5, 33 (1979).Google Scholar
  7. 7.
    M. C. Shen and A. Eisenberg, Progr. Solide State Chem., 3, 407, 1966.CrossRefGoogle Scholar
  8. 8.
    J. D. Ferry “Viscoelastic Properties of Polymers” 2nd Ed. Wiley, New York, 1970.Google Scholar
  9. 9.
    R. F. Boyer, Rubber Chem. Techn., 36, 1303 (1963).CrossRefGoogle Scholar
  10. 10.
    J. Heijbour, Intern. J. Polymeric Mater., 6, 11 (1977).CrossRefGoogle Scholar
  11. 11.
    R. F. Boyer, J. Macromol. Sci. Phys., B8, 503 (1973).CrossRefGoogle Scholar
  12. 12.
    ibidem “Macromolecules”, 6, 288 (1973).Google Scholar
  13. 13.
    O. Kramer, R. Greco, R. A. Neira and J. D. Ferry, J. Polym. Sci., Polym. Phys. Ed., 12, 2361 (1974).CrossRefGoogle Scholar
  14. 14.
    O. Kramer, R. Greco, J. D. Ferry and E. T. McDonel, ibidem 13, 1675 (1975).Google Scholar
  15. 15.
    R. Greco, C. R. Taylor, O. Kramer and J. D. Ferry, ibidem, 12, 1687 (1975).Google Scholar
  16. 15.
    P. G. De Gennes, J. Chem. Phys., 55, 572 (1971).CrossRefGoogle Scholar
  17. 17.
    S. F. Edwards and J. W. V. Grant, J. Phys., A6, 1169 (1973).CrossRefGoogle Scholar
  18. 18.
    M. Doi, Polym. J. (Japan), 5, 288 (1973).CrossRefGoogle Scholar
  19. 19.
    C. B. Bucknall “Toughened Plastics” Appl. Sci. Publ., London, 1977.Google Scholar
  20. 20.
    G. Ragosta and R. Greco, Tecnopolimeri e Resine, 2, 35 (1980).Google Scholar
  21. 21.
    V. Costantini and C. Quagliariello “Effect of the addition of random ethylene-propylene copolymers to HDPE-iPP blends” PhD. Thesis ITPR, Naples (1979).Google Scholar
  22. 22.
    R. Greco, H. B. Hopfenberg, E. Martuscelli, G. Ragosta and G. Demma, Polym. Eng. Sci., 18, 654 (1978).CrossRefGoogle Scholar
  23. 23.
    M. Costagliola, R. Greco, E. Martuscelli and G. Ragosta, J. Mat. Sci., 14, 1152 (1979).CrossRefGoogle Scholar
  24. 24.
    R. Greco, G. Ragosta, E. Martuscelli and C. Silvestre “Properties of Polystyrene-Polyolefine Alloys: I Processing and Mechanical Properties” (present book).Google Scholar
  25. 25.
    E. Martuscelli, C. Silvestre, R. Greco and G. Ragosta “Properties of Polystyrene-Polyolefine Alloys: II Processing Morphology Relationship” (present book).Google Scholar
  26. 26.
    M. Avella, R. Greco, N. Lanzetta, G. Maglio, M. Malinconico, E. Martuscelli, R. Palumbo and G. Ragosta “Synthesis of Interfacial agents and their use in Nylon 6/Rubber Alloys” (present book).Google Scholar
  27. 27.
    R. Greco, G. Mucciariello, G. Ragosta and E. Martuscelli, J. Mat. Sci., 15, 845 (1980).CrossRefGoogle Scholar
  28. 28.
    R. Greco, G. Ragosta, E. Martuscelli and G. Mucciariello, J. Mat. Sci., in print.Google Scholar
  29. 29.
    W. M. Barentsen and D. Heikens, 14, 579 (1973).Google Scholar
  30. 30.
    W. M. Barentsen, D. Heikens and P. Piet, Polym. 15, 119 (1974).CrossRefGoogle Scholar
  31. 31.
    W. M. Barentsen, P. J. Hejdenrijk, D. Heikens and P. Piet, Brit. Polym. J., 10, 17 (1978).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • R. Greco
    • 1
  1. 1.Istituto di Ricerche su Tecnologia dei Polimeri e Reologia del C.N.R.Arco Felice, NapoliItaly

Personalised recommendations