Skip to main content

Electronic Relaxation in Large Molecules

  • Chapter
Radiationless Processes

Abstract

We shall be concerned with intramolecular, nonreactive, interstate electronic relaxation processes in electronically excited states of collision-free isolated large molecules. These radiationless electronic relaxation processes involve the intramolecular conversion of electronic energy into vibrational energy. It is appropriate to start with a

  1. I

    PROLOGUE, where we discuss some of the general features of the acquisition, storage and disposal of energy in molecular systems, as explored from the microscopic point of view. This will be followed by another introductory section, where we dwell on the

  2. II

    HISTORY of the development of the experimental background, which provided conclusive evidence for the occurrence of electronic relaxation within a bound level structure of isolated large molecules. As this experimental work opened up some challenging theoretical issues, we proceed to outline the

  3. III

    METHODOLOGY underlying the theoretical description of time evolution within a bound level structure. This will be followed by the introduction of the

  4. IV

    BASIC MOLECULAR MODEL for interstate coupling and electronic relaxation, which provides the basis for outlining the theory of

  5. V

    TIME EVOLUTION involving the decay of a metastable state into a continuum or a quasicontinuum, which results in the exponential decay law and the golden rule decay rate. I Next, deviations from the exponential decay law are considered, going

  6. VI

    BEYOND THE GOLDEN RULE, introducing the effective Hamiltonian formalism to handle the decay of a manifold of discrete states into a common continuum and bringing up the notion of quantum beats in the radiative decay of some complex molecular level structures. While up to this point only time-resolved experimental observables were considered, we proceed to describe the diverse sources of experimental information discussing

  7. VII

    OBSERVABLES, which pertain to determination of populations and to the interrogation of retention of phase relationships, involving time-resolved observables, energy-resolved observables and observables pertaining to coherent optical effects. As an example for energy-resolved observables, we consider

  8. VIII

    ABSORPTION LINESHAPES, focusing attention on the information regarding interstate coupling which stems from optical spectroscopy. The last stage of the exposition will discuss

  9. IX

    THE RISE AND FALL OF EXCITED STATES of isolated polyatomic molecules, where we distinguish between implications of interstate coupling and relaxation, briefly discuss excitation modes and digress on criteria for practical irreversibility in a bound level structure. We conclude with a discussion of

  10. X

    FUTURE TRENDS, where some novel and intriguing problems in the area of intramolecular dynamics are exposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Molecular Energy Transfer (R.D. Levine and J. Jortner, eds.), John Wiley and Sons, New York (1975).

    Google Scholar 

  2. B.R. Henry and M. Kasha, Ann. Rev. Phys. Chem. 19, 161 (1968).

    Article  ADS  Google Scholar 

  3. J. Jortner, S.A. Rice and R.M. Hochstrasser, Adv. Photochem. 7, 149 (1969).

    Article  Google Scholar 

  4. E.W. Schlag, S. Schneider and S.F. Fischer, Ann. Rev. Phys. Chem. 22, 465 (1971).

    Article  ADS  Google Scholar 

  5. K.F. Freed, Topics Current Chem. 31 105 (1972).

    Google Scholar 

  6. B.R. Henry and W. Siebrand, Org. Mol. Photophys. 1 153 (1973).

    Google Scholar 

  7. G.W. Robinson, in Excited States, Vol. I (E.C. Lim, ed.), Academic Press, New York, 1 (1974).

    Google Scholar 

  8. J. Jortner and S. Mukamel, in The World of Quantum Chemistry, Vol. II (R. Daudel and B. Pullman, eds.), Neidel, Boston, 225 (1974).

    Google Scholar 

  9. S.A. Rice, in Excited States, Vol. II ( E.C. Lim, ed.), Academic Press, New York (1975).

    Google Scholar 

  10. J. Jortner and S. Mukamel, in Molecular Energy Transfer (R.D. Levine and J. Jortner eds.), Wiley, New York, 178 (1975).

    Google Scholar 

  11. J. Jortner and S. Mukamel, in MTP Series in Science, Vol. 13, Theoretical Chemistry ( C.A. Coulson and A.D. Buckingham, eds.), Butterworth, London (1976).

    Google Scholar 

  12. K.F. Freed, in Radiationless Transitions in Molecules and Condensed Phases (F.K. Fong, ed.), Springer-Verlag, Berlin, 23 (1976).

    Google Scholar 

  13. J. Jortner and R.D. Levine, in Photoselective Chemistry ( J. Jortner, R.D. Levine and S.A. Rice eds.), Advances in Chemical Physics, Academic Press, New York (1980).

    Google Scholar 

  14. Chemical and Biochemical Applications of Lasers, Vols. 1, 2 and 3 (C.B. Moore, ed.), Academic Press, New York, (1976, 1977, 1978).

    Google Scholar 

  15. Picosecond Phenomena (C.V. Chank, E.I. Ippen and S.L. Shapiro, eds.), Springer-Verlag, Berlin (1979).

    Google Scholar 

  16. Laser Induced Processes in Molecules (K.L. Kompa and S.D. Smith, eds.), Springer-Verlag, Berlin (1979).

    Google Scholar 

  17. Laser Handbook, Vol. 1, (F.T. Arecchi and E.O. Schultz, eds.), Dubois, North Holland, Amsterdam, (1972).

    Google Scholar 

  18. Handbook of Chemical Lasers, (R.W.F. Gross and J.F. Bott, eds.), Wiley, New York, (1976).

    Google Scholar 

  19. R.K. Snader, B. Soep and R.N. Zare, J. Chem. Phys. 64 1242 (1976).

    Article  ADS  Google Scholar 

  20. R. Naaman, D.M. Luban and R.N. Zare, Chem. Phys. 32, 17 (1978).

    Article  Google Scholar 

  21. M.J. Coggiola, P. Schultz, Y.T. Lee and Y. Shen, Phys. Rev. Letters 38, 17 (1977).

    Article  ADS  Google Scholar 

  22. K.P. Huber and A.E. Douglas, Quarterly Progress Report, National Research Council of Canada, Ottawa Division of Pure Physics, Report 161 (1963), (1964) and (1966).

    Google Scholar 

  23. M.P. Sinha, A. Schultz and R.N. Zare, J. Chem. Phys. 58, 549 (1973).

    Article  ADS  Google Scholar 

  24. R.E. Smalley, B.L. Ramakrishna, D.H. Levy and L. Wharton, J. Chem. Phys. 61, 4363 (1974).

    Article  ADS  Google Scholar 

  25. R.E. Smalley, L. Wharton and D.H. Levy, J. Chem. Phys. 63, 4977 (1975).

    Article  ADS  Google Scholar 

  26. D.H. Levy, L. Wharton and R.E. Smalley, in Chemical and Biochemical Applications of Lasers, Academic Press, New York, Vol. 2, 1 (1977).

    Google Scholar 

  27. D.H. Levy, R. Wharton and R.E. Smalley, Accounts Chem. Res. 10, 139 (1977).

    Article  Google Scholar 

  28. P.S.H. Fitch, L. Wharton and D.H. Levy, J. Chem. Phys. 69 3424 (1978).

    Article  ADS  Google Scholar 

  29. A. Amirav, U. Even and J. Jortner, J. Chem. Phys. 71, 2319 (1979).

    Article  ADS  Google Scholar 

  30. S.M. Beck, M.G. Liverman, D.L. Monts and R.E. Smalley, J. Chem. Phys. 70, 232 (1979).

    Article  ADS  Google Scholar 

  31. S.M. Beck, D.L. Morris, M.G. Liverman and R.E. Smalley, J. Chem. Phys. 70, 1062 (1979).

    Article  ADS  Google Scholar 

  32. F.M. Behlen, N. Mikami and S.A. Rice, Chem. Phys. Letters 60, 364 (1979).

    Article  ADS  Google Scholar 

  33. P.S.H. Fitch, L. Wharton and D.H. Levy, J. Chem. Phys. 70, 2019 (1979).

    Article  ADS  Google Scholar 

  34. A. Amirav, U. Even and J. Jortner, Chem. Phys. Letters 67, 9 (1979).

    Article  ADS  Google Scholar 

  35. A. Amirav, U. Even and J. Jortner, Chem. Phys. Letters 67, 9 (1979).

    Article  ADS  Google Scholar 

  36. A. Amirav, U. Even and J. Jortner, Chem. Phys. Letters 67, 9 (1979).

    Article  ADS  Google Scholar 

  37. J. Tusa, M. Sulkes and S.A. Rice, J. Chem. Phys. 70, 3136 (1979).

    Article  ADS  Google Scholar 

  38. G.M. McClelland, K.L. Saenger, J.J. Valentini, and D.R. Herschbach, J. Phys. Chem. 83, 947 (1979).

    Article  Google Scholar 

  39. E.V. Shposkii, Sov. Phys. Uspekhi, 6, 411 (1963).

    Article  Google Scholar 

  40. R.M. Hochstrasser and P. Prasad, in Excited States, Vol. 1, (E.C. Lim, ed.), Academic Press, New York, 79 (1974).

    Google Scholar 

  41. G. Gerzberg, Commentarii Pontifica, Academia Scientiarum, Vol. 11-49, p. 1 (1972).

    Google Scholar 

  42. G. Herzberg, in Spectra of Diatomic Molecules, D. Van Nostrand Company, Toronto (1950).

    Google Scholar 

  43. G. Herzberg, in Electronic Spectra of Polyatomic Molecules, D. Van Nostrand Company, Toronto (1966).

    Google Scholar 

  44. G. Wenzel, Z. Phys. 43, 524 (1927).

    Article  ADS  Google Scholar 

  45. E. Fermi, in Nuclear Physics, University of Chicago Press (1949).

    Google Scholar 

  46. G. Gamow, Zeit f. Phys. 51, 204 (1928).

    Article  ADS  Google Scholar 

  47. R.W. Gurney and E.V. Condon, Nature 122, 439 (1928).

    Article  ADS  MATH  Google Scholar 

  48. N. Rosen, J. Chem. Phys. 1, 319 (1933).

    Article  ADS  Google Scholar 

  49. U. Fano, Novo Cimento 12, 156 (1935).

    Google Scholar 

  50. A. Jablonski, Nature 131, 839 (1933).

    Article  ADS  Google Scholar 

  51. G.N. Lewis and M. Kasha, J. Am. Chem. Soc. 66, 2100 (1944).

    Article  Google Scholar 

  52. M. Kasha, Discuss. Farad. Soc. 9, 14 (1950).

    Google Scholar 

  53. (a) C.A. Hutchison Jr. and B.W. Mangum, J. Chem. Phys. 32, 1261 (1960). (b) M.R. Wright, R.P. Frosch and G.W. Robinson, J. Chem. Phys. 33, 934 (1960).

    Google Scholar 

  54. G.W. Robinson and R.P. Frosch, J. Chem. Phys.. 37, 1962 (1962); 38, 1187 (1963).

    Google Scholar 

  55. J.H. Callamon, V.M. Anderson, J.R. Christie and A.R. Lacey, paper 25 at General Discussion Meeting on Radiationless Processes, Schliersee, September (1974).

    Google Scholar 

  56. R.J. Watts and S.J. Strickler, J. Chem. Phys. 44, 2423 (1966).

    Article  ADS  Google Scholar 

  57. R. Williams and G.J. Goldsmith, J. Chem. Phys. 44, 4364 (1966).

    Article  ADS  Google Scholar 

  58. W.R. Ware and P.T. Cunningham, J. Chem. Phys. 44, 4364 (1966).

    Article  ADS  Google Scholar 

  59. G.B. Kistiakowsky and C.S. Parmenter, J. Chem. Phys. 42, 2942 (1965).

    Article  ADS  Google Scholar 

  60. E.M. Anderson and G.B. Kistiakowsky, J. Chem. Phys. 48, 4787 (1968).

    Article  ADS  Google Scholar 

  61. M. Bixon and J. Jortner, J. Chem. Phys. 48, 715 (1968); 50, 4061 (1969); 50, 3284 (1969).

    Google Scholar 

  62. M. Bixon and J. Jortner, Mol. Crystals 213, 237 (1969).

    Google Scholar 

  63. E.W. Schlag and H. von Weyssenhoff, J. Chem. Phys. 53, 3108 (1970).

    Article  Google Scholar 

  64. C.S. Parmenter and M.W. Schuyler, Chem. Phys. Letters 6, 339 (1970).

    Article  ADS  Google Scholar 

  65. K.G. Spears and S.A. Rice, J. Chem. Phys. 55, 5561 (1971).

    Article  ADS  Google Scholar 

  66. P.M. Rentzepis, Science 169, 239 (1970).

    Article  ADS  Google Scholar 

  67. D. Huppert, J. Jortner and P.M. Rentzepis, Israel J. Chem. 16, 277 (1978).

    Google Scholar 

  68. B. Di Bartolo (This Volume).

    Google Scholar 

  69. R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).

    Article  Google Scholar 

  70. P.A. Franken, Phys. Rev. 121, 508 (1961).

    Article  ADS  Google Scholar 

  71. M. Bixon, J. Jortner and Y. Dothan, Mol. Phys. 17, 109 (1969).

    Article  ADS  Google Scholar 

  72. J. Chaiken and J.D. McDonald, Chem. Phys. Letters 61, 195 (1979).

    Article  ADS  Google Scholar 

  73. L. Allen and J.H. Eberly, in Optical Resonance and Two-Level Atoms, Wiley, New York (1975).

    Google Scholar 

  74. R.G. Brewer, in Frontiers in Laser Spectroscopy (R. Balian, S. Haroche and S. Liberman, eds.), North Holland, 341 (1977).

    Google Scholar 

  75. R. Lefebvre and J. Savolamen, Chem. Phys. Letters 3, 449 (1969).

    Article  ADS  Google Scholar 

  76. J. Jortner and J. Kommandeur, Chem. Phys. 28, 273 (1978).

    Article  ADS  Google Scholar 

  77. R.G. Brewer and E.L. Hahn, Phys. Rev. A11, 1641 (1975).

    Article  ADS  Google Scholar 

  78. R.G. Brewer and E.L. Hahn, Phys. Rev. A11, 1641 (1975).

    Article  ADS  Google Scholar 

  79. C.D. Cantrell, W.H. Louisell and J.F. Lam, in Laser Induced Processes in Molecules (K.L. Kompa and S.D. Smith, eds.), Springer-Verlag, Berlin, 138 (1979).

    Google Scholar 

  80. K.F. Bonhoeffer and L. Farkas, Z. Phys. Chem. A134, 337 (1927).

    Google Scholar 

  81. D. Chock, J. Jortner and S.A. Rice, J. Chem. Phys. 49, 610 (1968).

    Article  ADS  Google Scholar 

  82. M.L. Goldberger and K.M. Watson, in Collision Theory, John Wiley, New York (1964).

    Google Scholar 

  83. J.O. Berg, Chem. Phys. Letters 41, 547 (1976).

    Article  ADS  Google Scholar 

  84. J. Jortner, in J. Chim. Phys. Special Issue “Transitions Non-Radiative dans le Molecules”, 1 (1970).

    Google Scholar 

  85. A. Nitzan, J. Jortner and P.M. Rentzepis, Proc. Roy. Soc. A327, 367 (1972).

    Article  ADS  Google Scholar 

  86. A. Nitzan and J. Jortner, Theoret Chimica Acta. 30, 217 (1973).

    Article  Google Scholar 

  87. I. Kaplan and J. Jortner, Chem. Phys. 32, 381 (1978).

    Article  Google Scholar 

  88. H.B. Lin and M.R. Topp, Chem. Phys. Letters 47, 442 (1977); 48, 251 (1977).

    Google Scholar 

  89. R.L. Swofford, M.S. Burberry, J.A. Morrell and A.C. Albrecht, J. Chem. Phys. 66, 5245 (1977).

    Article  ADS  Google Scholar 

  90. K.V. Reddy, R.G. Bray and M.J. Berry in Advances in Laser Chemistry,(A.H. Zewail, ed.), Springer-Verlag, Berlin, 48 (1978).

    Google Scholar 

  91. D.D. Smith and A.H. Zewail, J. Chem. Phys. 71, 540 (1979).

    Article  ADS  Google Scholar 

  92. J.G. Moehlam, J.T. Gleaves, J.W. Hudgens and J.D. McDonald, J. Chem. Phys., 60, 4790 (1974).

    Article  ADS  Google Scholar 

  93. J.P. Maier, S. Selmeier, A. Laubereau and W. Kaiser, Chem. Phys. Letters 46, 527 (1977).

    Article  ADS  Google Scholar 

  94. R.V. Ambartzumian, Yu A. Gorokhov, V.S. Letokhov, G.N. Makarov, Zh ETF Pis. Red. (Sov.), 22, 96 (1975).

    Google Scholar 

  95. J.A. Beswick and J. Jortner, J. Chem. Phys. 68, 2277 (1968).

    Article  ADS  Google Scholar 

  96. See for example (a) R.V. Ambartzumian and V.S. Letokhov, Accts. Chem. Res. 10, 61 (1977); (b) C.D. Cantrell, S.M. Freund and J.L. Lyman, Laser Handbook, Vol. III, North Holland, Amsterdam (1978); (c) N. Blumbergen and E. Yablonovitch, Phys. Today, (5) 31, 1978.

    Google Scholar 

  97. B.I. Greene, R.M. Hoshstrasser and R.B. Weisman, J. Chem. Phys. 71, 544 (1979).

    Article  ADS  Google Scholar 

  98. A.E. Douglas, Nature, 269, 130 (1977).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Jortner, J. (1980). Electronic Relaxation in Large Molecules. In: DiBartolo, B., Goldberg, V. (eds) Radiationless Processes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3174-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3174-2_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3176-6

  • Online ISBN: 978-1-4613-3174-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics