The Calculation of the Decay Rate of the Proton

  • D. A. Ross
Part of the Ettore Majorana International Science Series book series (EMISS, volume 7)


All attempts which have been made to construct a model which unifies the strong, weak, and electromagnetic interactions predict the existence of currents which transform quarks into leptons and this generally leads to the prediction that the proton is unstable. Now usually when a theorist predicts the existence of an exotic interaction for which there is no experimental evidence, he keeps one step ahead of the experimentalists by arguing that the mass of the particles which mediate this exotic interaction are arbitrarily massive so that as the experimentalists decrease the upper bound on this interaction the theorist increases these masses. In a certain class of grand unified theories this option is closed since the masses of the particles mediating the interactions which lead to proton decay are exactly calculable. This class of grand unified theories is the class obeying the “desert hypothesis” namely the hypothesis that between the threshold for production of W’s and Z’s (~100 GeV) and grand unification there are no new degrees of freedom which open up. The simplest such model is the SU(5) model of Georgi and Glashow1, and since the point of unification of the strong, weak and electromagnetic interactions is very insensitive† to the exact details of the model provided it obeys the desert hypothesis, I shall work with the SU(5) model.


Gauge Boson Electromagnetic Interaction Proton Decay Grand Unify Theory Internal Loop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Georgi and S. L. Glashow, Phys. Rev. Letters 32 (1974) 438.ADSCrossRefGoogle Scholar
  2. 2.
    T. Goldman and D. A. Ross, Nucl. Phys. B162 (1980) 102.ADSCrossRefGoogle Scholar
  3. 3.
    S. L. Glashow, Nucl. Phys. 22 (1961) 579; S. Weinberg, Phys. Rev. Letters 19 (1967) 1264; A. Salam, Proceedings of the Eighth Nobel Symposium on Elementary Particle Theory, Relativistic Groups, and Analyticity, edited by N. Svartholm ( Wiley, New York, 1969 ).CrossRefGoogle Scholar
  4. 4.
    T. W. Appelquist and J. Carazzone, Phys. Rev. Dll (1975) 2856.Google Scholar
  5. 5.
    H. Georgi, H. Quinn and S. Weinberg, Phys. Rev. Letters 33 (1974) 451.ADSCrossRefGoogle Scholar
  6. 6.
    K. T. Mahanthappa and M. Sher, “Precise Determination of sin2 θw and the Masses of Weak Vector Bosons in SU(5).” Colorado preprint COLO-HEP 13(1979).Google Scholar
  7. 7.
    A. J. Buras, J. Ellis, M. K. Gaillard and D.V. Nanopoulos, Nucl. Phys. B135 (1978) 66.ADSCrossRefGoogle Scholar
  8. 8.
    H. Georgi and H. D. Politzer, Phys. Rev. D14 (1976) 1829.ADSGoogle Scholar
  9. 9.
    W. J. Marciano, Phys. Rev. D20 (1979) 274.ADSGoogle Scholar
  10. 10.
    T. Goldman and D. A. Ross, Phys. Letters 84B (1979) 208.ADSCrossRefGoogle Scholar
  11. 11.
    J. Ellis, M. K. Gaillard, D. V. Nanopoulos and S. Rudaz, LAPP preprint -14/CERN preprint TH-2833 (1980).Google Scholar
  12. 12.
    E. A. Paschos, Nucl. Phys. B159 (1979) 285.ADSCrossRefGoogle Scholar
  13. 13.
    D. A. Ross, Nucl. Phys. B140 (1978) 1.ADSCrossRefGoogle Scholar
  14. 14.
    W. Celmaster and R. J. Gonzalves, Phys. Rev. D20 (1979) 1420.ADSGoogle Scholar
  15. 15.
    G.’t Hooft and M. J. G. Veltman, Nucl. Phys. B44 (1972) 189; Bollini, J. J. Giambiagi, and A. Gonzalez Dominguez, Nuov. Cim. 31 (1964) 550.ADSCrossRefGoogle Scholar
  16. 16.
    T. Goldman and D. A. Ross, “How Accurately Can We Estimate the Proton Lifetime in an SU(5) Grand Unified Model?” Caltech Preprint, CALT-68-759 (1980).Google Scholar
  17. 17.
    C. Llewellyn Smith and G. G. Ross, Oxford University preprint in preparation.Google Scholar
  18. 18.
    P. Binétruy and T. Schücker, “Gauge and Renormalization Scheme Dependence in GUTS,” CERN preprint TH-2802 (1979).Google Scholar
  19. 19.
    W. Marciano, “Theoretic Aspects of Proton Decay,” Rockefeller University preprint, COO-2232B-195 (1980).Google Scholar
  20. 20.
    N. P. Chang, A. Das, and J. Perez-Mercader,“Proton Stability in an Asymptotically Free SU(5) Theory,” CCNY-HEP-79-24 (1979) and- CCNY-HEP-79-25.Google Scholar
  21. 21.
    J. Ellis, M. K. Gaillard, D. V. Nanopoulos and C. T. Sachrajda, Phys. Letters 83D (1979) 339.ADSCrossRefGoogle Scholar
  22. 22.
    J. Ellis, M. K. Gaillard, D. V. Nanopoulos, Phys. Letters 80B (1979) 360.ADSCrossRefGoogle Scholar
  23. 23.
    G. R. Cook, K. T. Mahanthappa, and M. A. Sher, Phys. Letters 90B (1980)398.Google Scholar
  24. 24.
    S. Weinberg, Phys. Letters 91B (1980) 51.ADSCrossRefGoogle Scholar
  25. 25.
    F. Wilczek and A. Zee, Phys. Rev. Letters 43 (1979) 1574.ADSCrossRefGoogle Scholar
  26. 26.
    J. Ellis, M. K. Gaillard, D. V. Nanopoulos, Phys. Letters 88B (1979)320.Google Scholar
  27. 27.
    J. Finjord, Phys. Letters 76B (1978) 116.ADSCrossRefGoogle Scholar
  28. 28.
    J. Learned, F. Reines and A. Soni, Phys. Rev. Letters 43 (1979) 907.ADSCrossRefGoogle Scholar
  29. 29.
    A. Din, G. Girardi and P. Sorba, Phys. Letters 91B (19 80) 77.Google Scholar
  30. 30.
    J. Donoghue, “Proton Lifetime and Branching Ratios in SU(5),” MIT preprint, CTP-824 (1979).Google Scholar
  31. 31.
    M. Machacek, Nucl. Phys. B159 (1979) 37.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • D. A. Ross
    • 1
  1. 1.California Institute of TechnologyPasadenaUSA

Personalised recommendations