Advertisement

Morphology of Skinned Membranes: A Rationale from Phase Separation Phenomena

  • C. A. Smolders
Part of the Polymer Science and Technology book series (POLS, volume 13)

Abstract

Asymmetric skinned membranes, first developed by Loeb and Sourirajan1 for cellulose acetate as a polymer material, owe their practical value in ultrafiltration and reverse osmosis techniques to the minimization of the hydrodynamic barrier while the selectivity and the mechanical properties of the membranes are maintained. These membranes consist of a very thin dense skin (0.1 to 0.5 μm thickness) and a porous sublayer (0.1 to 0.2 mm thick) of the same polymeric material, see e.g. ref. 2. It has been shown a.o. by Frommer3 that for the same polymer one can obtain different kinds of morphologies in the asymmetric membrane by changing the preparation conditions. Also it has become common knowledge4–6 that many other polymers than cellulose acetate can be used to prepare asymmetric, skinned membranes.

Keywords

Phase Separation Polymer Solution Cellulose Acetate Polymer Concentration Reverse Osmosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Loeb and S. Sourirajan, Advan. Chem. Ser., 38: 117 (1962).CrossRefGoogle Scholar
  2. 2.
    R.L. Riley, J.O. Gardner and U. Merten, Desalination, 1: 30 170 (1966).Google Scholar
  3. 3.
    M.A. Frommer and D. Lancet in: “Reverse Osmosis Membrane Research”, H.K. Lonsdale and H.E. Podall, eds., Plenum Press, New York (1972).Google Scholar
  4. 4.
    A.S. Michaels in: “Advances in Separation and Purification”, E.S. Perry, ed., Wiley, New York (1967).Google Scholar
  5. 5.
    R.E. Kesting, “Synthetic Polymeric Membranes”, McGraw Hill, New York (1971).Google Scholar
  6. 6.
    M.T. So, F.R. Eirich, R.W. Baker and H. Strathman, Polymer Letters, 11: 201 (1973).CrossRefGoogle Scholar
  7. 7.
    R. Zsigmondy and W. Bachman, Z. Anorg. Allgem. Chem., 103: 109 (1918).CrossRefGoogle Scholar
  8. 8.
    H. Strathmann and K. Koch, Desalination, 21: 241 (1977).CrossRefGoogle Scholar
  9. 9.
    J.D. Ferry, Chem. Rev., 18: 373 (1936).CrossRefGoogle Scholar
  10. 10.
    K. Maier and E. Scheuermann, Kolloid. Z., 171: 122 (1960).CrossRefGoogle Scholar
  11. 11.
    R.E. Kesting, J. Appl. Polym. Sci., 17: 1771 (1973).CrossRefGoogle Scholar
  12. 12. a.
    S. Sourirajan, “Reverse Osmosis”, Acad. Press, New York (1970).Google Scholar
  13. 12. b.
    R.E. Kesting, “Synthetic Polymeric Membranes”, McGraw Hill, New York (1971).Google Scholar
  14. 12. c.
    c. H.K. Lonsdale and H.E. Podall, eds., “Reverse Osmosis Membrane Research”, Plenum Press, New York (1972).Google Scholar
  15. 13.
    M. Guillotin, C. Lemoyne, C. Noel and L. Monnerie, Desalination, 21: 165 (1977).CrossRefGoogle Scholar
  16. 14.
    D.M. Koenhen, M.H.V. Mulder and C.A. Smolders, J. Appl. Polym. Sci., 21; 199 (1977).CrossRefGoogle Scholar
  17. 15.
    G.B. Tanny, J. Appl. Polym. Sci., 18: 2149 (1974).CrossRefGoogle Scholar
  18. 16.
    L. Broens, D.M. Koenhen and C.A. Smolders, Desalination, 22: 205 (1977).CrossRefGoogle Scholar
  19. 17.
    F.W. Altena and C.A. Smolders, “Proc. Prague Microsymp. Calorimetry”, to be published in J. Pol. Sci., Part C (1980).Google Scholar
  20. 18.
    L. Broens, F.W. Altena, C.A. Smolders and D.M. Koenhen, Desalination, 32: 33 (1980).CrossRefGoogle Scholar
  21. 19.
    J.W. Cahn, J. Chem. Phys., 42: 93 (1965).CrossRefGoogle Scholar
  22. 20.
    C.A. Smolders, J.J. van Aartsen and A. Steenbergen, Kolloid Z. Z. Polym., 243: 14 (1971).CrossRefGoogle Scholar
  23. 21.
    B. Wunderlich, “Macromolecular Physics”, Acad. Press, New York (1973).Google Scholar
  24. 22.
    J.H. Wendoff and E.W. Fischer, Kolloid Z. Z. Polym., 251: 884 (1973).CrossRefGoogle Scholar
  25. 23.
    J.P. Craig, J.P. Knudsen and U.F. Holland, Textile Res. J., 32: 435 (1962).CrossRefGoogle Scholar
  26. 24.
    V. Gröbe and K. Meijer, Faserf. Textiltechn., 10: 214 (1959).Google Scholar
  27. 25.
    V. Gröbe, G. Mann and G. Duve, Faserf. Textiltechn., 17: 142 (1966).Google Scholar
  28. 26.
    J.P. Knudsen, Textile Res. J., 33: 435 (1962).Google Scholar
  29. 27.
    A. Ziabichi, “Fundamentals of Fibre Formation”, Wiley, New York (1976).Google Scholar
  30. 28.
    H. Strathmann, K. Koch, P. Amer and R.W. Baker, Desalination, 16: 179 (1975).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • C. A. Smolders
    • 1
  1. 1.Department of Chemical TechnologyTwente University of TechnologyEnschedeThe Netherlands

Personalised recommendations