The Mass-Angular Momentum-Diagram of Astronomical Objects

  • Peter Brosche
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 58)


Mass M and angular momentum P are distinguished from other physical parameters by the existence of the respective conservation theorems. They are even distinguished from the energy E by the fact that the latter can be easily radiated away from an astronomical object but not M and P. While M and E can be thought of as a sum of microscopic contributions (gravitational energy can at least be converted into thermal energy or radiation), the large angular momenta of astronomical objects can only be associated with large coordinated motions of large aggregates of mass in large distances. This is because the unit of microscopic angular momentum, Planck’s constant ħ, is very small compared with the angular momentum of a celestial body divided by the number of its nucleons. Hence it seems that P is one if not the specific quantity defining macroscopic objects of astronomical size. If any, then M and P are the quantities which are most probably unchanged since an astronomical object has separated from the rest of the world. Therefore mass-angular momentum-diagrams of such objects should play at least the same important role as a meeting point between theories of the formation and the observations as the Hertzsprung-Russell-diagram plays for the evolution of stars.


Mercury Manifold Torque Coherence Rium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aikawa, T. and Hitotuyanagi, Z., 1974, The Mass-Angular Momentum Relation of Normal Spiral Galaxies, Science Reports Tôhoku, First Series,Vol.LVII: 121.Google Scholar
  2. Brosche, P., 1962, Zum Masse-Drehimpuls-Diagramm von Doppel- und Einzelsternen, Astron.Nachr. 286: 241.ADSCrossRefGoogle Scholar
  3. Brosche, P., 1963, über das Masse-Drehimpuls-Diagramm von Spiralnebeln und anderen Objekten, Zeitschr. f. Astrophys. 57: 143.ADSGoogle Scholar
  4. Brosche, P., 1964, Die Häufigkeit der Doppelsterne in der Sonnenumgebung, Astr. Nachr. 288: 33.ADSCrossRefGoogle Scholar
  5. Brosche, P., 1967a, Planetensysteme und das Masse-Drehimpuls-Diagramm, Icarus 6: 279.ADSCrossRefGoogle Scholar
  6. Brosche, P., 1967b, Die maximalen Rotationsgeschwindigkeiten in Galaxien, Zeitschr. f. Astrophys. 66: 161.ADSGoogle Scholar
  7. Brosche, P., 1969, Eine Analogie zwischen Elementarteilchen und astronomischen Objekten und eine neue große dimenslose Zahl, Naturwiss. 56: 85.ADSCrossRefGoogle Scholar
  8. Brosche, P., 1970, Konstanz der Elementarladung, Phys. Blätter 26: 95.Google Scholar
  9. Brosche, P., 1971, Rotation and Type of Galaxies, Astron. & Astrophys. 13: 293.ADSGoogle Scholar
  10. Brosche, P., 1973, The Manifold of Galaxies, Astron. & Astrophys. 23: 259.ADSGoogle Scholar
  11. Brosche, P., 1974, The mass-angular momentum diagram and the black hole limit, Astrophys. & Space Sci. 29: L7.ADSCrossRefGoogle Scholar
  12. Brosche, P., 1977, The Distribution of the Angular Momenta of Galaxies, Astrophys. & Space Sci. 51: 401.ADSCrossRefGoogle Scholar
  13. Brosche, P., 1978, Hubble sequence,angular momenta and time scales of the early evolution of galaxies, Astrophys. & Space Sci. 57: 463.ADSCrossRefGoogle Scholar
  14. Brosche, P. and Sündermann, J. (eds.), 1978, “Tidal Friction and the Earth’s Rotation”, Springer- Verlag, Berlin - Heidelberg - New York.Google Scholar
  15. Fish jr., F.F., 1967, Angular momenta of the planets, Icarus 7: 251.Google Scholar
  16. Harrison, E.R., 1973, Galaxy formation and the early universe, in: “Cargese Lectures in Physics”, E. Schatzman, ed., Gordon and Breach, New York - London - Paris.Google Scholar
  17. Hartmann, W.K. and Larson, S.M., 1967, Angular momenta of planetary bodies, Icarus 7: 257.ADSCrossRefGoogle Scholar
  18. Hokkyo, N., 1968, Quantum Fluctuation of Gravitational Field and Creation of Matter, Progr. Theor. Phys. 39: 1078.ADSCrossRefGoogle Scholar
  19. Markov, M.A., 1967, Elementary Particles of Maximally Large Masses (Quarks and Maximons), Soviet Phys.- JETP 24: 584.ADSGoogle Scholar
  20. Motz, L., 1962, Gauge Invariance and the Structure of Charged Particles, Nuovo Cimento Serie X, 26: 672.MathSciNetGoogle Scholar
  21. Motz, L., 1973, Gauge Invariance and the Quantization of Mass (of Gravitational Charge), Nuovo Cimento Serie XI, 12B: 239.Google Scholar
  22. Sirag, S.-P., 1979, Gravitational magnetism, Nature 278: 535.ADSCrossRefGoogle Scholar
  23. Treder, H.-J., 1976, Rasshirenie i vrashchatel’nyj moment bolshikh kosmicheskikh mass (russ.), Astrofizika 12: 511.ADSGoogle Scholar
  24. de Vaucouleurs, G., 1970, The case for a hierarchical cosmology, Science 167: 1203.ADSCrossRefGoogle Scholar
  25. Woolley, R. v. d. R., 1964, Rotation of the Globular Cluster a) Centauri, Nature 203: 961.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Peter Brosche
    • 1
  1. 1.Observatorium Hoher ListDaun/EifelGermany

Personalised recommendations