Radial Densities of Nuclear Matter and Charge via Moment Methods

  • B. J. Dalton


In this report I will discuss some initial efforts in our program to describe radial densities of nuclear matter and charge with the use of moment methods. A brief introduction to trace reduction formulas and computation problems along with proposed methods to overcome them will be given. This will be followed by a general discussion on computation of expectation values using moment methods with particular emphasis on formulation for the radial density applications.


Nuclear Matter High Moment Moment Method Single Particle State Slater Determinant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Redi and H. H. Stroke, J. Opt. Soc. Am. 65, 1 (1975); G. Hubis, J. Bonn, H. J. Kluge, and E. W. Otten, Z. Physik A276, 198 (1976), and references quoted therein.Google Scholar
  2. 2.
    H. Fischer et al., Z. Physik A284, 3 (1973); J. Bonn et al., Z. Physik A276, 203 (1976); T. Kühl et al., Phys. Rev. Lett. 39, 180 (1977).ADSCrossRefGoogle Scholar
  3. A list of references on this subject can be found in the following recent articles. Jonas Alster and Jaime Warszawski, Phys. Reports 52 88 (1979); G. E. Brown, B. K. Jennings and V. I. Rostokin, Phys. Rept.. 50, 227 (1979).Google Scholar
  4. 4.
    F. S. Chang, J. B. French, and T. H. Thio, Ann. of Phys. (N.Y.), 66, 137 (1971).ADSCrossRefGoogle Scholar
  5. 5.
    J. N. Ginocchio, Phys. Rev. C8, 135 (1973); J. N. Ginocchio, Phys. Rev. Lett. 31, 1260 (1973); S. Ayik and J. N. Ginocchio, Nucl. Phys. A221, 285 (1975), A234, 13 (1974); J. N. Ginocchio, and M. M. Yen, Nucl. Phys. A239, 365 (1975). See also B. D. Chang and S. S. M. Wong, Nucl. Phys. A294, 19 (1978).Google Scholar
  6. 6.
    J. P. Draayer, J. B. French and S. S. M. Wong, Ann. Phys. (N.Y.) (N.Y.), 106, 472 (1977); 106, 503 (1977).ADSCrossRefGoogle Scholar
  7. 7.
    J. P. Draayer, J. B. French, V. Potbhare and S. S. M. Wong, Phys. Lett. 55B, 264, 349 (1975); J. P. Draayer, J. P. French, V. Potbhare, M. Prasad and S. S. M. Wong, Phys. Lett. 57B, 130 (1975).Google Scholar
  8. 8.
    S. M. Grimes, C. H. Poppe, C. Wong and B. J. Dalton, Phys. Rev. C18, 1100 (1978).ADSGoogle Scholar
  9. 9.
    S. M. Grimes, S. D. Bloom, R. F. Hausman, Jr. and B. J. Dalton, Phys. Rev. C19, 2378 (1979).ADSGoogle Scholar
  10. 10.
    B. J. Dalton, W. J. Baldridge and J. P. Vary, Phys. Rev. C20, 1908 (1979).ADSGoogle Scholar
  11. 11.
    W. J. Baldridge and B. J. Dalton, Phys. Rev. C18, 589 (1978).Google Scholar
  12. 12.
    B. J. Dalton, J. P. Vary and W. J. Baldridge, Phys. Rev. Lett. 38, 1348 (1977).ADSCrossRefGoogle Scholar
  13. 13.
    H. Cramer, “Mathematical Methods of Statistics,” Princeton 1946; G. Szego, “Orthogonal Polynomials,” American Mathematical Society Colloquium Publications, Vol. XXIII, 1939.Google Scholar
  14. 14.
    J. B. French, E. C. Halbert, J. B. McGrory and S. S. M. Wong, in Advances in Nuclear Physics, ed. by M. Baranger and E. Vogt, Vol. 3 ( Plenum, N.Y., 1969 ), p. 193.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • B. J. Dalton
    • 1
  1. 1.The Ames Laboratory - USDOEIowa State UniversityAmesUSA

Personalised recommendations