Skip to main content

Abstract

The study of many-Fermion systems is now known to be very difficult and of fundamental importance whether atoms, molecules, nuclei or quarks are the constituents of interest. Indeed, most activity in physics is many-body physics and many of yesterdays “fundamental problems” such as the determination of the nuclear potential from scattering data, and the determination of the hadronic S-matrix from vague pseudoprinciples have gone the way of the Dodo, forgotten and mostly unlamented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. A. Baker, Jr., and J. L. Gammel, Eds., The Pade Approxi- mant in Theoretical Physics ( Academic Press, New York, 1970 ).

    Google Scholar 

  2. G. A. Baker, Jr., Essentials of Pade Approximants (Academic Press, New York, 1975); Rocky Mt. Math. J. 4, 141 (1974).

    Google Scholar 

  3. C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers ( McGraw-Hill, New York, 1978 ).

    MATH  Google Scholar 

  4. R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948); R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals ( McGraw- Hill, New York, 1965 ).

    Article  MathSciNet  ADS  Google Scholar 

  5. J. R. Klauder, Ann. Phys. (N.Y.) 11, 123 (1960).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. M. Kac, Probability and Related Topics in Physical Sciences ( Interscience Publishers, New York, 1964 ).

    Google Scholar 

  7. J. R. Klauder, J. Math. Phys. 11, 609 (1970).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. J. R. Klauder, J. Math. Phys. 18, 1711 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  9. J. R. Klauder, Phys. Rev. D14, 1952 (1976); ibid 15, 2830 (1978).

    Google Scholar 

  10. J. R. Klauder, Ann. Phys. (N.Y.) 117, 19 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  11. J. R. Klauder, “Continuous Representations and Path Integrals Revisited,” in Path Integrals, edited by G. J. Papadopoulos and J. T. Devreese (Plenum, New York, 1978), pg. 5 et seq.

    Google Scholar 

  12. J. R. Klauder, “Nonrenormalizability and New Measures for Quantum Field Theory I and II,” Third School of Elementary Particles and High Energy Physics, Primorsko, Bulgaria, October 5-13, 1977 (Sofia, 1978 ).

    Google Scholar 

  13. C. L. Hammer, J. E. Schrauner and B. DeFacio, Phys. Rev. D18, 373 (1978); ibid D19, 667 (1979).

    ADS  Google Scholar 

  14. D. Bessis, P. Maussa and M. Villani, J. Math. Phys. 16, 11 (1975).

    Article  ADS  Google Scholar 

  15. D. Bessis, this volume.

    Google Scholar 

  16. W. Feller, An Introduction to Probability Theory and its Applications, Volume I (3rd edition, 1968 ) and ibid Volume II (2nd edition, 1971 ), ( John Wiley, New York ).

    Google Scholar 

  17. J. N. Ginocchio, Phys. Rev. C8, 135 (1973).

    ADS  Google Scholar 

  18. J. P. Draayer, J. B. French and S. S. M. Wong, Ann. Phys. (N.Y.) 196, 476 (1977).

    Google Scholar 

  19. S. M. Grimes, C. H. Poppe, C. Wong and B. J. Dalton, Phys. Rev. C18, 1100 (1978).

    ADS  Google Scholar 

  20. S.M. Grimes, S.D. Bloom, R.F. Hausman and B.J. Dalton Phys. Rev. C19, 2378 (1979).

    ADS  Google Scholar 

  21. J. C. Wheeler and R. G. Gordon, “Bounds for Averages Using Moments,” in Ref. (2).

    Google Scholar 

  22. E. Ising, Z. Physik 31, 253 (1925).

    Article  ADS  Google Scholar 

  23. L. Onsager, Phys. Rev. 65, 117 (1944).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. B. Kaufman, Phys. Rev. 7J5, 1232 (1949).

    Google Scholar 

  25. B. Kaufman and L. Onsager, Phys. Rev. 76 1244 (1949).

    Google Scholar 

  26. T. D. Lee and C. N. Yang, Phys. Rev. 87, 410 (1952).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. E. Montroll, R. B. Potts and J. C. Ward, J. Math. Phys. 4, 308 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  28. T. D. Schultz, D. C. Mattis and E. Lieb, Rev. Mod. Phys. 36 856 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  29. B. M. McCoy and T. T. Wu, The Two-Dimensional Ising Model, ( Harvard University Press, Cambridge, MA, 1973 ).

    MATH  Google Scholar 

  30. C. J. Thompson, Mathematical Statistical Mechanics ( McMillan, New York, 1972 ).

    MATH  Google Scholar 

  31. F. Guerra, L. Rosen and B. Simon, Ann. Math 101, 111 (1975).

    Article  MathSciNet  Google Scholar 

  32. J. Glimm and A. Jaffe, Probability Applied to Physics, ( University of Arkansas Press, Fayetteville, AR, 1978 ).

    Google Scholar 

  33. B. Simon, The P(cf))2 Euclidean (Quantum) Field Theory, ( Princeton University Press, Princeton, NJ, 1974 ).

    Google Scholar 

  34. F. Wegner, J. Math. Phys. 12, 2259 (1971); J. Kogut, Rev. Mod. Phys. 51, 659 (1979).

    Google Scholar 

  35. G. A. Baker, Jr., B. G. Nickel, M. S. Green and D. I. Meiron, Phys. Rev. Lett. 3j6, 1351 (1976).

    Google Scholar 

  36. G. A. Baker, Jr., and J. M. Kincaid, Phys. Rev. Lett. 42, 1431 (1979).

    Article  ADS  Google Scholar 

  37. C. M. Newman, J. Stat. Phys. 15, 399 (1976).

    Article  ADS  Google Scholar 

  38. S. Gustafson, SIAM, J. Numer. Anal. 343 (1970).

    Google Scholar 

  39. S. Gustafson, Rocky Mt. J. Math. 4, 227 (1974).

    MATH  Google Scholar 

  40. C. N. Yang, Phys. Rev. 85, 809 (1952).

    Article  ADS  Google Scholar 

  41. S. Fisk and B. Widom, J. Chem. Phys. 50, 3219 (1969).

    Article  ADS  Google Scholar 

  42. D. B. Abraham, Stud. Appl. Math 51, 179 (1972).

    Google Scholar 

  43. D. B. Abraham and P. Reed, Comm. Math. Phys. 49, 35 (1976).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Defacio, B., Hammer, C.L., Shrauner, J.E. (1980). Spectral Methods Applied to Ising Models. In: Dalton, B.J., Grimes, S.M., Vary, J.P., Williams, S.A. (eds) Theory and Applications of Moment Methods in Many-Fermion Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3120-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3120-9_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3122-3

  • Online ISBN: 978-1-4613-3120-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics