Group Symmetries and Information Propagation

  • J. P. Draayer

Abstract

Spectroscopy concerns itself with the ways in which the Hamiltonian and other interesting operators defined in few-particle spaces are determined or determine properties of many-particle systems. But the action of the central limit theorem (CLT) filters the transmission of information between source and observer so whether propagating forward from a few-particle defining space, as is usual in theoretical studies, or projecting backward to it from measured things, each is only sensitive to averaged properties of the other.1 Our concern is with the propagation of spectroscopic information in the presence of good symmetries when filtering action of the CLT is effective. Specifically, we propose to address the question, “What propagates and how?”

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.B. French and F. S. Chang, in Statistical Properties of Nuclei, J. B. Garg, editor ( Plenum, New York, 1972 ).Google Scholar
  2. 2.
    J. B. French and J. P. Draayer, in Group Theoretical Methods in Physics, W. Beiglbock, A. Bohm and E. Takasugi, editors ( Springer-Verlag, New York, 1979 ).Google Scholar
  3. 3.
    J. D. Louck, Am. J. Phys. 38 (1970) 3.MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    J. B. French, in Nuclear Structure, A. Hossain, Harun-ar-Raschid, M. Islam, editors ( North-Holland, Amsterdam, 1967 ).Google Scholar
  5. 5.
    J. B. French, in Isospin in Nuclear Physics, D. H. Wilkinson, editor ( North-Holland, Amsterdam, 1965 ).Google Scholar
  6. 6.
    B. R. Judd, W. Miller, Jr., J. Patera, and P. Winternitz, J. Math. Phys. 15 (1974) 1787.Google Scholar
  7. 7.
    R. U. Haq and J. C. Parikh, Nucl. Phys. A220s (1974) 349.CrossRefGoogle Scholar
  8. 8.
    C. Quesne, J. Math Phys. 17 (1976) 1452.MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    W. Miller, Jr., as quoted in Ref. 8.Google Scholar
  10. 10.
    V. Kopsky, J. Phys. A12 (1979) 429.MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    T. T. S. Kuo, Nucl. Phys. A103 (1967) 71.CrossRefGoogle Scholar
  12. 12.
    J. B. French, Phys. Lett. B26 (1967) 75.CrossRefGoogle Scholar
  13. 13.
    T. R. Halemane, K. Kar and J. P. Draayer, Nucl. Phys. A311s (1978) 301.CrossRefGoogle Scholar
  14. 14.
    T. R. Halemane, private communication.Google Scholar
  15. 15.
    C. R. Countee, J. P. Draayer, T. R. Halemane and K. Kar, in press.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • J. P. Draayer
    • 1
  1. 1.Department of Physics and AstronomyLouisiana State UniversityBaton RougeUSA

Personalised recommendations