Simulation of Photosynthesis, a Resource for Energy

  • Itamar Willner
  • William E. Ford
  • John W. Otvos
  • Melvin Calvin

Abstract

Artificial devices that mimic the photosynthetic pathway are of interest as a fuel source. A basic concept in the design of such devices is the use of dyes to photosynthesize electron transfer reactions that produce chemical species capable of oxidizing and reducing water. A fundamental limitation accompanying the photodecomposition of water involves back reactions of the intermediary redox species, whereby the potential energy of the photochemical process is degraded. The introduction of interfaces as kinetic barriers to overcome this limitation is discussed. One type of interface is generated with water-in-oil microemulsions. A photo-induced transfer of electrons and protons from the aqueous phase to the organic phase of a water-in-oil microemulsion is sensitized by the tris(2,2′-bipyridine)Ru(2+) complex. EDTA dissolved in the aqueous compartments is oxidized and dimethyl-aminoazobenzene dissolved in the continuous oil phase is reduced. The electron transfer process is mediated by benzylnicotinamide, an acceptor located at the interface of the system. The second type of interface discussed is generated with lipid bilayer membrane vesicles. An amphiphilic tris(2,2′-bipyridine)Ru(2+) complex that is incorporated into the walls of phospholipid vesicles photosensitizes the oxidation of EDTA dissolved in the inner aqueous compartments of the vesicle suspension and the reduction of viologens dissolved in the aqueous phase. Intentionally added membrane-bound electron and proton carriers are not required for electron transport across the vesicle walls. Mechanisms for electron transport are considered.

Keywords

Surfactant Chlorophyll EDTA Manganese Toluene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Balzani, L. Maggi, M.F. Manfrin, F. Bolleta, M. Gleria, Science, 189, 852 (1975)CrossRefGoogle Scholar
  2. 2.
    J.R. Bolton, Science, 202, 705 (1978)CrossRefGoogle Scholar
  3. 3.
    M. Calvin, Acc. Chem. Res. 11, 369 (1978)CrossRefGoogle Scholar
  4. 4.
    G. Porter, Pure and Appl. Chem. 50, 263 (1978); “Photosynthesis in Relation to Model Systems”, J. Barber, ed., Elsevier/North Holland, New York (1979) M. Calvin, Photochem. Photobiol. 23, 425 (1976)Google Scholar
  5. 5.
    M. Calvin, J.A. Bassham, “The Path of Carbon in Photosynthesis”, Prentice-Hall, Englewood Cliffs, (1957)Google Scholar
  6. 6.
    D.O. Hall, K.K. Rao, “Photosynthesis”, Edward Arnold, London (1972)Google Scholar
  7. 7.
    K. Sauer, Acc. Chem. Res. 11, 257 (1978)CrossRefGoogle Scholar
  8. 8.
    R.H. Holm, Acc. Chem. Res. 10, 427 (1977); D.I. Arnon, Proc. Nat. Acad. Sci. 68, 2883 (1971);CrossRefGoogle Scholar
  9. 9.
    G.R. Seely, Photochem. Photobiol. 27, 639 (1978); T. J. Meyer, Israel J. Chem. 15, 200 (1977)CrossRefGoogle Scholar
  10. 10.
    M. Calvin, J. Theoret. Biol. 1, 258 (1961)CrossRefGoogle Scholar
  11. 11.
    M. Gibbs, ed., “Structure and Functions of Chloroplasts”, Springer-Verlag, Berlin (1971)Google Scholar
  12. 12.
    I. Willner, W.E. Ford, J.W. Otvos, M. Calvin, Nature (London), 280, 823 (1979)CrossRefGoogle Scholar
  13. 13.
    W.E. Ford, J.W. Otvos, M. Calvin, Nature (London), 274, 507 (1978)CrossRefGoogle Scholar
  14. 14.
    J.H. Fendler, F.J. Fendler, “Catalysis in Micelles and Macromolecular Systems”, Academic Press, New York (1975)Google Scholar
  15. 15.
    Y.Y. Lim, J.H. Fendler, J. Amer. Chem. Soc. 100, 7490 (1978)CrossRefGoogle Scholar
  16. 16.
    J. Van Houten, R.J. Watts, J. Amer. Chem. Soc. 98, 4853 (1976)CrossRefGoogle Scholar
  17. 17.
    E. Steckhan, T. Kuwana, Ber. Bunsenges. 78, 253 (1974)Google Scholar
  18. 18.
    K. Nakamura, A. Ohno, S. Yasui, S. Oka, Tetrahedron Letters, 45, 4815 (1978)CrossRefGoogle Scholar
  19. 19.
    B.T. Newbold, Chapter 15 in “The Chemistry of the Hydrazo, Azo, and Azoxy Groups”, S. Patai, ed., Wiley, New York (1975)Google Scholar
  20. 20.
    V. Massey, M. Stankovitch, P. Hemmerich, Biochemistry, 17, 1, (1978)CrossRefGoogle Scholar
  21. 21.
    A.I. Krasna, Photochem. Photobiol. 29, 267 (1979)CrossRefGoogle Scholar
  22. 22.
    D.S. Berns, Photochem. Photobiol. 24, 117 (1976)CrossRefGoogle Scholar
  23. 23.
    H.T. Tien in ref. 4. (J. Barber, ed.), pp. 116–173Google Scholar
  24. 24.
    H. Kuhn, J. Photochem. 10, 111 (1979)CrossRefGoogle Scholar
  25. 25.
    M. Mangel, Biochem. Biophys. Acta, 430, 459 (1976)CrossRefGoogle Scholar
  26. 26.
    K. Kurihara, M. Sukigara, and Y. Toyoshima, Biochem. Biophys. Acta, 547, 117 (1979); K. Kurihara, Y. Toyoshima, M. Sukigara, Biochem. Biophys. Res. Commun. 88, 320 (1979)CrossRefGoogle Scholar
  27. 27.
    Y. Sudo, F. Toda, Nature, 279, 808 (1979)CrossRefGoogle Scholar
  28. 28.
    S. Batzri, E.D. Korn, Biochem. Biophys. Acta, 298, 1015, (1973)CrossRefGoogle Scholar
  29. 29.
    K. Takuma, M. Kajiwara, T. Matsuo, Chem. Lett. 1199 (1977)Google Scholar
  30. 30.
    W.E. Ford, J.W. Otvos, M. Calvin, Proc. Nat. Acad. Sci. 76, 3590 (1979)CrossRefGoogle Scholar
  31. 31.
    F. Bolletta, M. Maestri, V. Balzani, J. Phys. Chem. 80, 2499 (1976)CrossRefGoogle Scholar
  32. 32.
    J.E. Rothman, J. Lenard, Science, 195, 743 (1977)CrossRefGoogle Scholar
  33. 33.
    E. Sackmann, Ber. Bunsenges. Phys. Chem. 82, 891 (1978)Google Scholar
  34. 34.
    J. Kiwi, M. Grätzel, Helv. Chim. Acta, 61, 2720 (1978)CrossRefGoogle Scholar
  35. 35.
    N. Sutin, J. Photochem., 10, 19 (1979)CrossRefGoogle Scholar
  36. 36.
    J.M. Backer, E.A. Dawidowicz, Biochem. Biophys. Acta, 551, 260 (1979)Google Scholar
  37. 37.
    R.C. Young, F.R. Keene, T.J. Meyer, J. Am. Chem. Soc. 99, 2468 (1977)CrossRefGoogle Scholar
  38. 38.
    D. Mauzerall in “The Porphyrins”, Vol. V, pp. 29–52., D. Dolphin, ed., Academic, New York (1978)Google Scholar
  39. 39.
    V.I. Goldanskii, Nature, 279, 109 (1979)CrossRefGoogle Scholar
  40. 40.
    A. Illani, D.S. Berns, Biophysik, 9, 209 (1973)CrossRefGoogle Scholar
  41. 41.
    S.A. Alkaitis, G. Beck, M. Grätzel, J. Am. Chem. Soc. 97, 5723 (1975)CrossRefGoogle Scholar
  42. 42.
    C. Wolff, M. Grätzel, Chem. Phys. Lett. 52, 542 (1977); Y. Tsutsui, K. Takuma, T. Nishijima, T. Matsuo, Chem. Lett. 617 (1979)Google Scholar
  43. 43.
    A. Moradpour, E. Amouyal, P. Keller, H. Kagan, Nouv. J. Chim. 2, 547 (1978)Google Scholar
  44. 44.
    J.M. Lehn, J.P. Sauvage, Nouv. J. Chim. 1, 449 (1977) M. Kirch, J.M. Lehn, J.P Sauvage, Helv. Chim. Acta, 62, 1345 (1979)Google Scholar
  45. 45.
    K. Kalyanasundarum, J. Kiwi, M. Grätzel, Helv. Chim. Acta, 61, 2720 (1978)CrossRefGoogle Scholar
  46. 46.
    J. Barber ed., “Topics in Photosynthesis - Photosynthesis in Relation to Model Systems”, Vol. 3., Elsevier/North-Holland, Biomedical Press, Amsterdam (1979)Google Scholar
  47. 47.
    A. Harriman, J. Barber in Ref. 46, pp. 243–280Google Scholar
  48. 48.
    J.M. Lehn, J.P. Sauvage, R. Ziessel, Nouv. J. Chim. 3, 423 (1979)Google Scholar
  49. 49.
    J. Kiwi, M. Grätzel, Angew. Chem. Int. Ed. Engl. 18, 624 (1979); K. Kalyanasundarum, M. Grätzel, Angew. Chem. Int. Ed. Engl. 18, 701 (1979)CrossRefGoogle Scholar
  50. 50.
    L.D. Rampino, F.F. Nord, J. Amer. Chem. Soc. 63, 2745 (1941) H. Hirai, Y. Nakao, N. Toshima, K. Adachi, Chem. Lett. 905 (1976) J. Kiwi, M. Grätzel, Nature, 281, 657 (1979)CrossRefGoogle Scholar
  51. 51.
    M. Calvin,. Science, 184, 375 (1974)CrossRefGoogle Scholar
  52. 52.
    M. Calvin, Energy Research, 3, 73 (1974)CrossRefGoogle Scholar
  53. 53.
    S.R. Cooper, M. Calvin, Science, 185, 376 (1974)CrossRefGoogle Scholar
  54. 54.
    G. Porter, Proc. R. Soc. Lond.A, 362, 281 (1978); I.A. Duncan, A. Harriman, G. Porter, J. Chem. Soc., Faraday Transactions I I, 1920 (1978)CrossRefGoogle Scholar
  55. 55.
    M. Baccouche, J. Ernest, J.H. Fuhrop, R. Schlozer, H. Arzoumanian, J. Chem. Soc. Chem. Commun. 821, (1977)Google Scholar
  56. 56.
    J.T. Groves, T.E. Nemo, R.S. Myers, J. Amer. Chem. Soc. 101, 1032 (1979)CrossRefGoogle Scholar
  57. 57.
    C.K. Chang, M.S. Kuo, J. Amer. Chem. Soc. 101, 3413 (1979) K.B. Sharpless, T.C. Flood, J. Amer. Chem. Soc. 93, 2316 (1971)CrossRefGoogle Scholar
  58. 58.
    I. Willner, J.W. Otvos, W.E. Ford, H. Mettee, M. Calvin, submitted for publication.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Itamar Willner
    • 1
  • William E. Ford
    • 1
  • John W. Otvos
    • 1
  • Melvin Calvin
    • 1
  1. 1.Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations