Advertisement

Bioelectrochemistry, the Living State, and Electronic Conduction in Proteins

  • Ronald Pethig
  • Albert Szent-Györgyi

Abstract

The biological importance of charge-transfer reactions involving structural proteins is discussed. Particular emphasis is placed on those reactions which result in the generation of delocalized electronic charges in the protein molecules, and several experimental studies on various protein-methylglyoxal complexes are described which provide strong evidence for the existence of such a process. Such studies have led to the synthesis of a new compound that exhibits interesting physiological activity.

Keywords

Schiff Base Dielectric Dispersion Polypeptide Backbone Potential Energy Barrier Electronic Transference Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Szent-Györgyi, “Introduction to a Submolecular Biology”, Academic, New York (1969)Google Scholar
  2. 2.
    A. Szent-Györgyi, “The Living State”, Academic, New York (1972)Google Scholar
  3. 3.
    A. Szent-Györgyi, “Electronic Biology and Cancer”, Marcel Dekker, New York (1976)Google Scholar
  4. 4.
    A. Szent-Györgyi, “The Living State and Cancer”, Marcel Dekker, New York (1978)Google Scholar
  5. 5.
    R. Pethig, “Dielectric and Electronic Properties of Biological Materials”, Wiley, Chicester (1979)Google Scholar
  6. 6.
    D. L. Worcester, Proc. Natl. Acad. Sci. USA, 75, 5475 (1978)CrossRefGoogle Scholar
  7. 7.
    A. Szent-Györgyi, Nature, 148 157 (1941)CrossRefGoogle Scholar
  8. 8.
    G. Foder, R. Mujumdar and A. Szent-Györgyi, Proc. Natl. Acad. Sci. USA, 75, 4317 (1978)CrossRefGoogle Scholar
  9. 9.
    H. D. Dakin and H. W. Dudley, J. Biol. Chem. 14, 155 (1913)Google Scholar
  10. 10.
    C. Neuberg, Biochem. Z. 49, 202 (1913)Google Scholar
  11. 11.
    P. Otto, J. Ladik, K. Laki and A. Szent-Györgyi, Proc. Natl. Acad. Sci. USA, 75, 3548 (1978)CrossRefGoogle Scholar
  12. 12.
    R. Pethig, Int. J. Quantum Chem; Quantum Biol. Symp. 5, 159, (1978)Google Scholar
  13. 13.
    S. Bone and R. Pethig, “Submolecular Biology and Cancer”, Ciba Foundation Symposium 67, (new series), Elsevier, Holland, pp 83–105 (1979)Google Scholar
  14. 14.
    R. Pethig and A. Szent-Györgyi, Proc. Natl. Acad. Sci. USA, 74, 226 (1977)CrossRefGoogle Scholar
  15. 15.
    C. C. Liang, Trans. Faraday Soc. 65. 3369 (1969)CrossRefGoogle Scholar
  16. 16.
    J. Eden, P. R. C. Gascoyne and R. Pethig, J. Chem. Soc. Faraday I,75 (1979). In print.Google Scholar
  17. 17.
    P. Carnochan and R. Pethig, J. Chem. Soc. Faraday I, 72, 2355 (1976)Google Scholar
  18. 18.
    T. J. Lewis, Int. J. Quantum Chem: Quantum Biol. Symp. 5. 149 (1978)Google Scholar
  19. 19.
    P. R. C. Gascoyne and R. Pethig, J. Chem. Soc. Faraday I, 73, 171 (1977)CrossRefGoogle Scholar
  20. 20.
    R. Pethig, J. Biol. Phys. 1, 193 (1973)CrossRefGoogle Scholar
  21. 21.
    R. Pethig and R. B. South, IEEE Trans. Instr. Meas. IM. 23, 406 (1975)Google Scholar
  22. 22.
    P. Otto, J. Ladik and A. Szent-Györgyi, Proc. Natl. Acad. Sci. USA, 16 (1979). In print.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Ronald Pethig
    • 1
    • 2
  • Albert Szent-Györgyi
    • 1
  1. 1.Laboratory of the National Foundation for Cancer ResearchMarine Biological LaboratoryWoods HoleUSA
  2. 2.Laboratory of the National Foundation for Cancer ResearchUniversity College of North WalesBangorUK

Personalised recommendations