Skip to main content

Fracture Mechanics and Adherence of Viscoelastic Solids

  • Chapter
Adhesion and Adsorption of Polymers

Part of the book series: Polymer Science and Technology ((POLS,volume 12))

Abstract

Contact of two elastic solids is treated as a thermodynamic problem. It is shown that U = UE+US and UE = US+UP+US are thermo-dynamic potentials respectively for transformations at fixed grips and at fixed load conditions (UE, UP, US are the elastic, potential, interface energies). Equations giving the displacement δ and the strain energy release rate G as a function of the contact area A and the load P appear to be the equations of state of the system. Two bodies in contact on an area A are in equilibrium if G=w, where w is the thermodynamic (or Dupre’s) work of adhesion. This equilibrium is stable if ∂G/∂A is positive, unstable if negative. The quasistatic force of adherence is the load corresponding to ∂G/∂A = o. But equilibrium may be stable at fixed grips and unstable at fixed load, so that the quasistatic force of adherence may depend on the stiffness of the measuring apparatus. When G>w, the separation of the two bodies starts, and can be seen as the propagation of a crack in mode I. G-w is the force applied to unit length of crack; under this force, the crack takes a limiting speed v, which is a function of the temperature, and one can write

$$G - w = w\phi \left( {{a_T}v} \right).$$

The second term is the drag due to viscoelastic losses at the crack tip and is proportional to was proposed by Gent and Schultz, and Andrews and Kinloch. The function Φ is a characteristic of the material (most probably linked to the frequency dependence of E′ and E″, the real and imaginary part of the Young modulus) and is independent of the geometry and loading system. In this proposed formula surface properties and viscoelastic losses are clearly decoupled from elastic properties and loading conditions that appear in G. If Φ is known, this equation allows one to predict any feature such as kinetics of detachment at fixed load, fixed grips or fixed cross-head velocity δ. (This last point completely solves the problem of tackiness). The only hypotheses are that failure is an adhesive failure and that viscoelastic losses are limited to the crack tip; this last condition means that gross displacements must be elastic for G to be valid in kinetic phenomena.

Three geometries are investigated: adherence of punches, adherence of spheres and peeling. The variation of energies with area of contact is given, and the kinetics of crack propagation under various conditions is studied. Experiments on the adherence of polyurethane to glass confirm the theoretical predictions with a high precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Kendall, J. Phys. D; Appi. Phys. 4, 1186–95 (1971).

    Article  ADS  Google Scholar 

  2. K.L. Johnson, K. Kendall and A.D. Roberts, Proc. R. Soc. Lond. A324 301–13 (1971).

    Article  ADS  Google Scholar 

  3. K. Kendall, J. Phys. D; Appl. Phys. 5, 1782–7 (1973b).

    Article  ADS  Google Scholar 

  4. K. Kendall, J. Phys. D; Appl. Phys. 8, 1449–52 (1975g).

    Article  ADS  Google Scholar 

  5. K. Kendall, J. Phys. D; Appl. Phys. 8, 1722–32 (1975h).

    Article  ADS  Google Scholar 

  6. K. Kendall, J. Phys. D; Appl. Phys. 8, 512–22 (1975c).

    Article  ADS  Google Scholar 

  7. K. Kendall, Proc. Soc. Lond. A 344 287–302 (1975e).

    Article  ADS  Google Scholar 

  8. K. Kendall, J. Adhesion 7, 137–40 (1975f).

    Article  MathSciNet  Google Scholar 

  9. K. Kendall, Proc. R. Soc. Lond. A 341, 409–28 (1975a).

    Article  ADS  Google Scholar 

  10. K. Kendall, J. Mat. Sc. 11, 638–44 (1976a).

    Article  ADS  Google Scholar 

  11. K. Kendall, J. Mat. Sc. 11, 1263–6 (1976b).

    Article  ADS  Google Scholar 

  12. K. Kendall, J. Mat. Sc. 11, 1267–9 (1976c).

    Article  ADS  Google Scholar 

  13. K. Kendall, J. Mat. Sc. 10, 1011–4 (1975d).

    Article  ADS  Google Scholar 

  14. J.R. Rice, “Fracture: An Advanced Treatise”, ed. H. Liebowitz (New York: Academic Press), Vol. 2, p. 191–311 (1968).

    Google Scholar 

  15. C. Huet, Ind. Minerale 3 128–41 (1973).

    Google Scholar 

  16. D. Maugis and M. Barquins, J. Phys. D: Appl. Phys. JM, 1989–2023 (1978b).

    Google Scholar 

  17. H.B. Callen, Thermodynamics (New York: John Wiley & Sons) (I960).

    Google Scholar 

  18. R. Courtel, D. Maugis and M. Barquins, Industrie Minerale 4, 137–43 (1977).

    Google Scholar 

  19. H.D. Bui, Mecanique de la rupture fragile ( Paris: Masson ) (1978).

    Google Scholar 

  20. J.D. Ferry, “Viscoelastic Properties of Polymers”, 2nd edition ( New York: John Wiley & Sons ) (1970).

    Google Scholar 

  21. D.H. Kaelble, J. Colloid Sc. 19, 413–24 (1964).

    Article  Google Scholar 

  22. D.H. Kaelble, J. Adhesion 1, 102–23 (1969).

    Article  Google Scholar 

  23. A.N. Gent and R.P. Petrich, Proc. Soc. Lond. A310, 433–48 (1969).

    Article  ADS  Google Scholar 

  24. A.N. Gent, J. Polym. Sc. A-2 9, 283–94 (1971).

    Google Scholar 

  25. A.N. Gent and A.J. Kinloch, J. Polym. Sc. A-2 9, 659–68 (1971).

    Google Scholar 

  26. A.N. Gent and J. Schultz, J. Adhesion 3, 281–94 (1972).

    Article  Google Scholar 

  27. E.H. Andrews and A.J. Kinloch, Proc. R. Soc. Lond. A 332, 385–99 (1973).

    Article  ADS  Google Scholar 

  28. M. Barquins and R. Courtel, Wear 32, 133–50 (1975).

    Article  Google Scholar 

  29. bis. A.D. Roberts and A.B. Othman, Wear 42, 119–33 (1977).

    Article  Google Scholar 

  30. M. Barquins, R. Courtel and D. Maugis, Eighth World Conference on Non-Destructive Testing, Cannes (France), Paper 4 B 11 (1976).

    Google Scholar 

  31. J. Boussinesq, “Application des Potentiels” (nouveau tirage), (Paris: Blanchard, 1885 (1969).

    Google Scholar 

  32. S. Way, J. Appl. Mech. ASME 7, 147–57 (1940).

    Google Scholar 

  33. bis. K. Kendall, J. Adhesion 5, 77–9 (1973a).

    Article  Google Scholar 

  34. J.P. Berry, J. Mech. Phys. Solids 8, 194–206 (1960).

    Article  ADS  MATH  Google Scholar 

  35. D. Maugis and M. Barquins, C.R. Acad. Sc. Paris B, 1–4 (1978a).

    Google Scholar 

  36. K.L. Johnson, “The Mechanics of the Contact Between Deformable Bodies”, eds. A.D. de Pater and J.J. Kalker (Delft: Delft UP), p. 26–40 (1975).

    Google Scholar 

  37. M. Barquins, D. Maugis and R. Courtel, C.R. Acad. Sc. Paris B 279. 565–8 (1974).

    Google Scholar 

  38. R.J. Good, J. Am. Chem. Soc. 74, 5041–2 (1952).

    Article  Google Scholar 

  39. G.A.D. Briggs and Briscoe, B.J., Phys. D: Appl. Phys. 22, 2453–66 (1977).

    Article  ADS  Google Scholar 

  40. K.N.G. Fuller and D. Tabor, Proc. Soc. Lond. A 345, 327–42 (1975).

    Article  ADS  Google Scholar 

  41. K.E. Easterling and A.R. Thölen, Acta Met. 20, 1001–8 (1972).

    Article  Google Scholar 

  42. A. Kohno and S. Hyodo, J. Phys. D: Appl. Phys. 7, 1243–6 (1974).

    Article  ADS  Google Scholar 

  43. D. Maugis, G. Desalos-Andarelli, A. Heurtel and R. Courtel, ASLE Trans. 21, 1–19 (1978).

    Google Scholar 

  44. A.D. Roberts and A.G. Thomas, Wear 33, 45–64 (1975).

    Article  Google Scholar 

  45. N. Brunt, Rheologica Acta 1, 242–7 (1958).

    Article  Google Scholar 

  46. R.C. Drutowski, Trans. ASME; J. Lub. Techn. 91F, 732–7 (1969).

    Article  Google Scholar 

  47. K. Kendall, J. Adhesion 7, 55–72 (1975b).

    Article  MathSciNet  Google Scholar 

  48. M. Barquins and D. Maugis, C.R. Acad. Sc. Paris B 125–8 (1977).

    Google Scholar 

  49. M. Barquins and D. Maugis, C.R. Acad. Sc. Paris B 287 57–60 (1978).

    Google Scholar 

  50. K. Kendall, Wear 33, 351–8 (1975i).

    Article  Google Scholar 

  51. D. Maugis and M. Barquins, C.R. Acad. Sc. Paris B 287 49–52 (1978c).

    Google Scholar 

  52. R.S. Rivlin, Paint Technol. 9, 215–6 (1944).

    Google Scholar 

  53. B.V. Deryagin and N.A. Krotova, Dokl. Akad. Nank SSSR 61, 849–52 (1948).

    Google Scholar 

  54. B.V. Deryagin and N.A. Krotova, Chem. Abstr. 43, 2842 (1949).

    Google Scholar 

  55. D. Maugis, Le Vide No. 186, 1–19 (1977).

    Google Scholar 

  56. D.A. Birch, J.T. Evans and J.R. White, J. Phys. D; Appl. Phys. 10, 2003–10 (1977).

    Article  ADS  Google Scholar 

  57. A.D. Roberts, Rub. Chem. Tech. 52, 23–42 (1979).

    Article  Google Scholar 

  58. A.R. Savkoor and G.A.D. Briggs, Proc. R. Soc. Lond. A 356, 103–116 (1977).

    Article  ADS  MATH  Google Scholar 

  59. H.M. Pollock, D. Maugis and M. Barquins, Appl. Phys. Lett. 33, 789–9 (1978).

    Article  ADS  Google Scholar 

  60. K.L. Johnson, Brit. J. Appl. Phys. 9, 199–200 (1958).

    Article  ADS  Google Scholar 

References

  1. B.V. Derjaguin, V.M Muller, Yu. P. Toporov, J. Colloid Interface Sci. 53, 314 (1975)

    Article  Google Scholar 

  2. D. Tabor, J. Colloid Interface Sci. 58, 2 (1977); J. Colloid Interface Sci. 67, 380 (1978).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Maugis, D., Barquins, M. (1980). Fracture Mechanics and Adherence of Viscoelastic Solids. In: Lee, LH. (eds) Adhesion and Adsorption of Polymers. Polymer Science and Technology, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3093-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3093-6_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3095-0

  • Online ISBN: 978-1-4613-3093-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics