Adhesive-Adherend Bond Joint Characterization by Auger Electron Spectroscopy and Photoelectron Spectroscopy

  • J. S. Solomon
  • D. Hanlin
  • N. T. McDevitt
Part of the Polymer Science and Technology book series (POLS, volume 12)

Abstract

Chemical and physical information about intact adhesive bond joints is usually inferred from data obtained from each isolated component (adhesive and adherend) prior to bonding or after bond failure. A technique is presented in which the chemical state as well as the elemental distribution can be obtained from intact bond joints using conventional surface characterization techniques such as Auger electron and photoelectron spectroscopies. The technique involves the use of thin film adherend adhesively bonded structures. The thin film adherends (5×10-7m) are prepared by vacuum deposition, which, after various treatments and subsequent bonding, can be ion beam etched away until the adherend-adhesive interface is reached for characterization. A number of bonding parameters have been investigated using this technique, including effects of adherend surface treatments (i.e. anodization, protection primers, corrosion inhibitors) and cure conditions (i.e. time, temperature and pressure).

Keywords

Titanium Magnesium Silane Chromate Epoxy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.W. Dwight, J. Colloid Interface Sci. 59, 447 (1977).CrossRefGoogle Scholar
  2. 2.
    W.L. Baun, J. Adhesion 7, 261 (1976).CrossRefGoogle Scholar
  3. 3.
    W.L. Baun, Experimental Methods to Determine Locus of Failure and Bond Failure Mechanism in Adhesive Joints and Coating-Substrate Combination, in “Characterization of Metal and Polymer Surfaces”, Vol. 1, K.L. Mettal, ed.. Academic Press, New York (1977).Google Scholar
  4. 4.
    C.F. Garrett and E.F. Good, “Characterization of Bonding Surfaces Using Surface Analytical Equipment”, 4th International Symposium on Contamination Control, Washington, D.C., September 1978; proceedings to be published by Plenum Publishing Company, April 1979.Google Scholar
  5. 5.
    L.T. Drzal, “Summary of the Workshop Held on the Role of the Polymer Substrate Interphase in Structural Adhesion”, Air Force Materials Laboratory Technical Report AFML-TR-77-129, 1977.Google Scholar
  6. 6.
    P.W. Palmberg, Journal of Vacuum Sci. and Technol. 9, 160 (1972).ADSCrossRefGoogle Scholar
  7. 7.
    N.T. McDevitt, W.L. Baun, and J.S. Solomon, J. Electrochem. Soc. 123, 1058 (1976).CrossRefGoogle Scholar
  8. 8.
    J.S. Solomon and W.L. Baun, “Surface Characterization of Contamination of Adhesive Bonding Materials”, 4th International Symposium on Contamination Control, Washington, D.C., Spetember 1978; proceedings to be published by Plenum Publishing Company, April 1979.Google Scholar
  9. 9.
    W.L. Baun, N.T. McDevitt, and J.S. Solomon, Chemistry of Metal and Alloy Adherends by Secondary Ion Mass Spectroscopy, Ion Scattering Spectroscopy, and Auger Electron Spectroscopy, in “Surface Analysis Techniques for Metallurgical Applications”, ASTM STP 596, American Society for Testing and Materials, 86 (1976).Google Scholar
  10. 10.
    J.W. Coburn and C. Kay, Critical Review of Solid State Science 4, 561 (1974).CrossRefGoogle Scholar
  11. 11.
    H.J. Mathiew and D. Landolt, Depth Profile Analysis of Thin Oxide Films by Auger Electron Sepectroscopy, in “Proceedings of the 7th International Vacuum Congress and 3rd International Conference on Solid Surfaces” (Vienna 1977 ), R. Debrozemsky, F. Rudenauer, F. Viehbock, and A. Breth, ed., Dobrozemsky, Vienna (1977).Google Scholar
  12. 12.
    Y.H. Choo and O.F. Devereux, J. Electrochem. Soc. 123, 1868 (1976).CrossRefGoogle Scholar
  13. 13.
    R.E. Pawel, J.P. Penler, and C.A. Evans, J. Electrochem. Soc. 119, 24 (1972).CrossRefGoogle Scholar
  14. 14.
    W.L. Baun, “Surface Analysis of 2024 and 7075 Aluminum Alloys After Conditioning by Chemical Treatments”, Air Force Materials Laboratory Technical Report AFML-TR-75-122, 1975.Google Scholar
  15. 15.
    W.L. Baun and N.T. McDevitt, “Surface Characterization of Titanium and Titanium Alloys, Part II: Effect on Ti-6A1-4V Alloy of Laboratory Chemical Treatments”, Air Force Materials Laboratory Technical Report AFML-TR-76-29, 1976.Google Scholar
  16. 16.
    H.S. Schwartz, SAMPE Journal 13, 2 (1977).Google Scholar
  17. 17.
    G.E. Thompson, R.C. Furneau, G.C. Wood, J.A. Richardson, and J.S. Goode, Nature 272, 433 (1978).ADSCrossRefGoogle Scholar
  18. 18.
    J.P. O’Sullivan and G.C. Wood, Proc. Roy. Soc. London, A317, 511 (1970).ADSGoogle Scholar
  19. 19.
    J.U. Diggle, T.C. Downie, and C.W. Goulding, Chem. Rev. 69, 365 (1969).CrossRefGoogle Scholar
  20. 20.
    C.J. Dell’Oca, Thin Solid Films 26, 371 (1975).ADSCrossRefGoogle Scholar
  21. 21.
    W.H. Gutmann, “Concise Guide to Structural Adhesives”, Reinhold Publishing Company, New York, 37 (1961).Google Scholar
  22. 22.
    Minnesota Mining and Manufacturing ACIS Division, 3M Center, St. Paul, Minnesota 55101.Google Scholar
  23. 23.
    American Cyanamid Company, Bloomingdale Aerospace Products, Havre de Grace, Md. 21078.Google Scholar
  24. 24.
    J. Solomon and W.L. Baun, J. Vac. Sci. Technol. 12, 375 (1975).ADSCrossRefGoogle Scholar
  25. 25.
    T.N. Wittberg, J.R. Hoenigman, and W.E. Moddeman, J. Vac. Sci. Technol. 15, 348 (1978).ADSCrossRefGoogle Scholar
  26. 26.
    J. Kerchner and H.W. Etzkorn, Thin Film Analysis, from Sputter Profiles to Depth Profiles by Combined Auger/X-Ray Analysis, in “Proceedings of the 7th International Vacuum Congress and 3rd International Conference on Solid Sur-faces” (Vienna 1977 ), R. Debrozemsky, F. Rüdenauer, F. Viehböck, and A. Breth, ed., Dobrozemsky, Vienna (1977).Google Scholar
  27. 27.
    G.K. Wehner, The Aspects of Sputtering in Surface Analysis Methods, in “Methods of Surface Analysis, A.U. Czanderna, ed., Elsevier Scientific Publishing Company, Amsterdam (1975).Google Scholar
  28. 28.
    G. Paolini, M. Masares, F. Sacchi, and M. Paganelli, J. Electrochem. Soc. 112, 32 (1965).CrossRefGoogle Scholar
  29. 29.
    R. Honig and U. Harrington, Thin Solid Films 19, 43 (1973).ADSCrossRefGoogle Scholar
  30. 30.
    J. Solomon, Applied Spectroscopy 30, 46 (1976).ADSCrossRefGoogle Scholar
  31. 31.
    J.A. Marceau, SAMPE Quarterly 9, 1 (1978).Google Scholar
  32. 32.
    K.K. Rice, S.L. Lehmann, D.K. Klappratt, and C.L. Mahoney, “Exploratory Development of Corrosion Inhibiting Primers”, Air Force Materials Laboratory Technical Report AFML-TR-77-121, July 1977.Google Scholar
  33. 33.
    A. Benninghoven, Surface Sci. 53, 593 (1975).ADSCrossRefGoogle Scholar
  34. 34.
    C.J. Lin and J.P. Bell, J. Appl. Polymer Sci. 16, 1721 (1972).CrossRefGoogle Scholar
  35. 35.
    P. Braun, W. Faber, G. Betz, and F.P. Viehböck, Vacuum 27, 102 (1977).CrossRefGoogle Scholar
  36. 36.
    K. Siegbahn, C. Nordling, G. Johansson, J. Hedeman, P.F. Heden, K. Hamrin, U. Gelius, T. Bergmark, L.O. Werme, R. Manne, and Y. Baer, “ESCA Applied to Free Molecules”, North Holland, Amsterdam, 1969.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • J. S. Solomon
    • 1
  • D. Hanlin
    • 1
  • N. T. McDevitt
    • 2
  1. 1.University of Dayton Research InstituteDaytonUSA
  2. 2.Air Force Materials Laboratory (MBM)USA

Personalised recommendations