Advertisement

Technological Applications of Solid Electrolytes

  • K. P. Jagannathan
  • S. K. Tiku
  • H. S. Ray
  • A. Ghosh
  • E. C. Subbarao
Chapter

Abstract

The previous chapters have adequately discussed and illustrated the present status of solid electrolytes from the point of view of fundamental research and information. The scope is indeed very wide. Potential uses of solid electrolytes of various kinds in commercial applications are also numerous. However, in actual practice such applications remain rather limited due to problems associated with commercially available materials as well as actual technological difficulties in incorporating such materials in contemplated devices.

Keywords

Fuel Cell Solid Electrolyte Thermal Shock Resistance Oxygen Probe Solid Oxide Electrolyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Meites, ed., Handbook of Analytical Chemistry, McGraw-Hill, New York (1963).Google Scholar
  2. 2.
    J. P. Hoare, The Electrochemistry of Oxygen, Interscience, New York (1968), p. 146.Google Scholar
  3. 3.
    G. J. Janz, F. Colom, and F. Saegusa, J. Electrochem. Soc. 107, 581 (1960).Google Scholar
  4. 4.
    V. I. Mineuko, S. M. Petrov, and H. S. Ivanova, Zh. Fiz. Khim. 35, 1534 (1961).Google Scholar
  5. 5.
    R. Didschenko and E. G. Rochow, J. Am. Chem. Soc. 76, 3291 (1954).Google Scholar
  6. 6.
    A. Ghosh and T. B. King, Trans. Melali. Soc. AIME 245, 145 (1969).Google Scholar
  7. 6a.
    J. Fouletier, P. Fabry, and M. Kleitz, J. Electrochem. Soc. 123, 204 (1976).Google Scholar
  8. 7.
    T. H. Etsell and S. N. Flengas, J. Electrochem. Soc. 118, 1890 (1971).Google Scholar
  9. 8.
    J. B. Clegg, J. Chromatogr. 52, 367 (1970).Google Scholar
  10. 9.
    T. H. Etsell and S. N. Flengas, Met. Trans. 3, 27 (1972).Google Scholar
  11. 10.
    C. B. Alcock, private communication (December 1973).Google Scholar
  12. 11.
    H. S. Spacil, Met. Progr. 96(5), 106, 108, 111, 112, 114, 116, 118 (1969).Google Scholar
  13. 12.
    M. Sato, in Research Techniques for High Pressure and High Temperature, ed. G. C. Ulmer, Springer-Verlag, Berlin (1971).Google Scholar
  14. 12a.
    A. Ghosh, private communication (September 1976).Google Scholar
  15. 13.
    B. C. H. Steele and C. B. Alcock, Trans. Metall. Soc. AIME 233, 1359 (1965).Google Scholar
  16. 14.
    K. P. Jagannathan, Ph.D. thesis, Indian Institute of Technology, Kanpur, 1972.Google Scholar
  17. 15.
    D. A. Rudd, Iron Steel 44(5), 331 (1971).Google Scholar
  18. 15a.
    L. M. Handman, C. E. Spangter, and R. F. Thompson, U.S. Pat. No. 3,864,232 (1975).Google Scholar
  19. 16.
    J. D. Tretyakov and A. Muan, J. Electrochem. Soc. 116, 331 (1969).Google Scholar
  20. 17.
    J. Weissbart and R. Ruka, Rev. Sci. Instrum. 32, 593 (1961).Google Scholar
  21. 18.
    T. Katsura and M. Hasegawa, Bull. Chem. Soc. Jpn. 40, 561 (1967).Google Scholar
  22. 19.
    M. Sato, Am. Mineral. 55, 1424 (1970).Google Scholar
  23. 20.
    W. M. Hickam and J. F. Zamoria, Instrum. Control Syst. 40, 87 (1967).Google Scholar
  24. 21.
    C. R. Edwards, A. Lambert, A. Massey, and J. Laskey, J.I.S.I. 205, 142 (1967).Google Scholar
  25. 22.
    V. A. Leitske and D. L. Schroeder, Iron Steel Eng. XLIV, 121 (August 1967).Google Scholar
  26. 23.
    Brahma Deo and V. B. Tare, J. Sci. Ind. Res. (India) 30, 465 (1971).Google Scholar
  27. 24.
    K. Kiukkola and C. Wagner, J. Electrochem. Soc. 104, 379 (1957).Google Scholar
  28. 25.
    J. F. Elliott, M. Gleiser, and V. Ramakrishna, Thermochemistry of Steelmaking, Addison-Wesley, Reading, Massachusetts (1960).Google Scholar
  29. 26.
    R. Hultgren, R. L. Orr, P. D. Anderson, and K. K. Kelley, Selected Values of Thermodynamic Properties of Metals and Alloys, John Wiley, New York (1963).Google Scholar
  30. 27.
    T. C. Wilder, Trans. Metall. Soc. AIME 236, 1035 (1966).Google Scholar
  31. 28.
    C. F. Diaz and F. D. Richardson, in Electromotive Force Measurements in High Temperature Systems, ed. C. B. Alcock, Elsevier, New York (1968).Google Scholar
  32. 29.
    J. Osterwald, Z. Phys. Chem. N.F. 49, 138 (1966).Google Scholar
  33. 30.
    W. Puschkell and H. J. Engell, Z. Metallkd. 56, 450 (1965).Google Scholar
  34. 31.
    W. A. Fischer and W. Ackermann, Arch. Eisenhuttenwes. 37, 43 (1966).Google Scholar
  35. 32.
    H. Rickert and H. Wagner, Electrochim. Acta 11, 83 (1966).Google Scholar
  36. 33.
    J. Dompas and J. Van Melle, J. Inst. Met. 98, 304 (1970).Google Scholar
  37. 34.
    A. Achari, private communication (1973).Google Scholar
  38. 35.
    R. J. Fruehan and F. D. Richardson, Trans. Met. Soc. AIME 245, 1721 (1969).Google Scholar
  39. 36.
    T. N. Belford and C. B. Alcock, Trans. Faraday Soc. 61, 443 (1965).Google Scholar
  40. 37.
    T. A. Ramanarayanan and R. A. Rapp, Met. Trans. 3, 3239 (1972).Google Scholar
  41. 38.
    C. R. Nanda and G. M. Geiger, Met. Trans. 1, 1235 (1970).Google Scholar
  42. 39.
    K. T. Jacob, S. K. Seshadri, and F. D. Richardson, Trans. Inst. Min. Met. 79, C27 (1970).Google Scholar
  43. 40.
    K. T. Jacob and J. H. E. Jeffes, Trans. Inst. Min. Met. 80, C32 (1971).Google Scholar
  44. 41.
    C. B. Alcock and T. N. Belford, Trans. Faraday Soc. 60, 822 (1964).Google Scholar
  45. 42.
    G. K. Bandyopadhyay and H. S. Ray, Met. Trans. 2, 3055 (1971).Google Scholar
  46. 43.
    K. T. Jacob and J. H. E. Jeffes, J. Chem. Thermodyn. 3, 433 (1971).Google Scholar
  47. 44.
    W. A. Fischer and D. Janke, Arch. Eisenhuttenwes. 41, 361 (1970).Google Scholar
  48. 45.
    R. Baker and J. M. West, J.I.S.I. 204, 212 (1966).Google Scholar
  49. 46.
    U. V. Choudary and A. Ghosh, J. Electrochem. Soc. 117, 1027 (1970).Google Scholar
  50. 47.
    P. J. Roychowdhury and A. Ghosh, Met. Trans. 2, 2171 (1971).Google Scholar
  51. 48.
    S. K. Das and A. Ghosh, Met. Trans. 3, 803 (1972).Google Scholar
  52. 49.
    W. A. Fischer and D. Janke, Arch. Eisenhuttenwes. 39, 89 (1968).Google Scholar
  53. 50.
    G. R. Fitterer, J. Met. 18, 961 (1966).Google Scholar
  54. 51.
    G. R. Fitterer, J. Met. 19(9), 92 (1967).Google Scholar
  55. 52.
    G. R. Fitterer, C. D. Cassley, and V. L. Vierbiesky, J. Met. 21(8), 46 (1969).Google Scholar
  56. 53.
    K. Schwerdtfeger, Trans. Metall. Soc. AIME 239, 1276 (1967).Google Scholar
  57. 54.
    R. J. Fruehan, L. J. Martonic, and E. T. Turkdogan, Trans. Metall. Soc. AIME 245, 1501 (1969).Google Scholar
  58. 55.
    C. K. Russell, R. J. Fruehan, and J. Rittiger, J. Met. 23(11), 44 (1971).Google Scholar
  59. 56.
    D. A. Dukelow, J. M. Stelzer, and G. F. Koons, J. Met. 23(12), 22 (1971).Google Scholar
  60. 57.
    E. T. Turkdogan, J.I.S.L 210, 21 (1972).Google Scholar
  61. 58.
    Y. Matsushita and K. Goto, Trans. Lron Steel Inst. Jpn. 6, 131 (1966).Google Scholar
  62. 59.
    M. Ihida and Y. Kawai, Trans. Iron Steel Inst. Jpn. 12, 269 (1972).Google Scholar
  63. 60.
    D. A. J. Swinkels, S. R. Richards, and J. B. Henderson, “Oxygen Probe Applications in Steelmaking,” (1972), unpublished.Google Scholar
  64. 61.
    S. R. Richards, D. A. J. Swinkels, and J. B. Henderson, Proc. ICSTIS Section 2, Suppl. Trans. Iron Steel Inst. Jpn. 11, 371 (1971).Google Scholar
  65. 62.
    V. I. Yavoiskii, V. P. Luzgin, A. G. Svyazhim, N. S. Grigorev, E. V. Merker, I. M. Konovalov, E. A. Nechaev, and N. N. Zakharov, Steel USSR 1, 513 (1971).Google Scholar
  66. 63.
    V. I. Yavoiskii, L. P. Luzgin, E. E. Merker, A. G. Svyazhin, and N. S. Grigorev, Steel USSR 2, 20 (1972).Google Scholar
  67. 64.
    G. N. Oiks and T. M. Asadov, Steel USSR 2, 192 (1972).Google Scholar
  68. 65.
    R. Littlewood, Can. Met. Quart. 5(1), 1 (1966).Google Scholar
  69. 66.
    T. H. Etsell and S. N. Flengas, Chem. Rev. 70, 339 (1970).Google Scholar
  70. 66a.
    N. Weber, Energy Corners. 14, 1 (1974).Google Scholar
  71. 67.
    D. A. J. Swinkels, J. Electrochem. Soc. 117, 1267 (1970).Google Scholar
  72. 68.
    H. Schmalzried, Z. Phys. Chem. N.F. 38, 87 (1963).Google Scholar
  73. 68a.
    P. H. Scaife, D. A. J. Swinkels, and S. R. Richards, High Temp. Sei. 8, 31 (1976).Google Scholar
  74. 68b.
    b. H. W. den Hartog and B. Slangen, Ironmaking Steelmaking 3, 64 (1976).Google Scholar
  75. 68c.
    C. E. A. Shanahan, Proc. Chem. Conf. 25, 48 (1972).Google Scholar
  76. 69.
    H. Rickert, in Electromotive Force Measurements in High Temperature Systems, ed. C. B. Alcock, Elsevier, New York (1968).Google Scholar
  77. 70.
    H. Rickert and A. El Miligy, in Reactivity of Solids, eds. J. Mitchell, R. DeVries, R. Roberts, and P. Cannon, Wiley Interscience, New York (1969), p. 17.Google Scholar
  78. 71.
    K. Goto and Y. Matsushita, J. Electrochem. Soc. Jpn. 35, 10 (1967).Google Scholar
  79. 72.
    R. Rapp and D. Shores, in Techniques in Metals Research, Vol. 4, Part 2, ed. R. A. Rapp, Interscience, New York (1970), p. 123.Google Scholar
  80. 73.
    V. B. Tare and S. H. Ghude, J. Sci. Ind. Res. (India) 29, 190 (1970).Google Scholar
  81. 74.
    H. Rickert and Z. Steiner, Z. Phys. Chem. 49, 127 (1966).Google Scholar
  82. R. A. Rapp, in Proceedings of the Conference on Thermodynamics of Nuclear Materials I.A.E.A., Vienna (1967–1968).Google Scholar
  83. 76.
    L. Heyne, in Mass Transport in Oxides, eds. J. B. Wachtman, Jr. and A. D. Franklin, Natl. Bur. Stand. (U.S.) Spec. Publ. 296, 149 (1968).Google Scholar
  84. 77.
    D. Yuan and F. A. Kröger, J. Electrochem. Soc. 111, 594 (1969).Google Scholar
  85. 78.
    Y. K. Agarwal, D. W. Short, R. Gruenke, and R. A. Rapp, J. Electrochem. Soc. 121, 354 (1974).Google Scholar
  86. 79.
    C. B. Choudhary, H. S. Maiti, and E. C. Subbarao, private communication (1973).Google Scholar
  87. 80.
    Y. L. Sandler, J. Electrochem. Soc. 121, 764 (1974).Google Scholar
  88. 81.
    K. E. Oberg, L. M. Friedman, W. M. Boorstein, and R. A. Rapp, Met. Trans. 4, 75 (1973).Google Scholar
  89. 82.
    R. Littlewood, Trans. Metall. Soc. AIME 233, 772 (1965).Google Scholar
  90. 83.
    R. Littlewood and E. J. Argent, Electrochim. Acta 4, 114, 155 (1961).Google Scholar
  91. 84.
    R. Littlewood, J. Electrochem. Soc. 109, 525 (1962).Google Scholar
  92. 85.
    C. R. Russell, Elements of Energy Conversion, Pergamon Press, New York (1967).Google Scholar
  93. 86.
    E. M. Walsh, Energy Conversion, Ronald Press, New York (1967).Google Scholar
  94. 87.
    G. W. Sutton, ed., Direct Energy Conversion, McGraw-Hill, New York (1966).Google Scholar
  95. 88.
    S. L. Soo, Direct Energy Conversion, Prentice-Hall, Englewood Cliffs, New Jersey (1968).Google Scholar
  96. 89.
    J. O’M. Bockris and S. Srinivasan, Fuel Cells— Their Electrochemistry, McGraw-Hill, New York (1969).Google Scholar
  97. 90.
    H. Binder, A. Koehling, H. Krupp, K. Richter, and G. Sandstede, Electrochim. Acta 8, 781 (1963).Google Scholar
  98. 91.
    H. A. Liebhafsky and E. J. Cairns, Fuel Cells and Fuel Batteries — A Guide to Their Research and Development, John Wiley, New York (1968).Google Scholar
  99. 92.
    E. J. Cairns and A. D. Tevebaugh, J. Chem. Eng. Data 9, 453 (1964).Google Scholar
  100. 93.
    S. V. Karpachev and S. F. Palguev, in Fuel Cells— Their Electrochemical Kinetics, eds. V. L. Bagotskii and Yu. B. Vasilev, Consultants Bureau, New York (1966), p. 97.Google Scholar
  101. 94.
    N. W. Panney, Fuel Cells — Recent Developments, Noyes Development Corp., Park Ridge, New Jersey (1969).Google Scholar
  102. 95.
    D. W. White, Electrochemical Society Extended Abstracts, Fall Meeting, Montreal, October 6–11, 1968, Abs. 354, p. 187.Google Scholar
  103. 96.
    J. L. Bliton, H. S. Rechter, and Y. Harada, Am. Ceram. Soc. Bull. 42, 6 (1963).Google Scholar
  104. 97.
    N. J. Maskalick and C. C. Sun, J. Electrochem. Soc. 118, 1386 (1971).Google Scholar
  105. 98.
    C. S. Tedmon, Jr., H. S. Spacil, and S. P. Mitoff, Electrochem. Soc. 116, 1170 (1969).Google Scholar
  106. 99.
    D. H. Archer, L. Elikan, and R. L. Zahradnik, in Hydrocarbon Fuel Cell Technology, ed. B. S. Baker, Academic Press, New York (1965), p. 51.Google Scholar
  107. 100.
    J. Weissbart and R. Ruka, Electrochem. Soc. 109, 723 (1962).Google Scholar
  108. 101.
    R. E. Carter, W. A. Rocco, H. S. Spacil, and W. E. Tragert, Chem. Eng. News, Jan. 14 (1963), p. 47.Google Scholar
  109. 102.
    D. H. Archer, J. J. Alles, W. A. English, L. Elikan, E. F. Sverdrup, and R. L. Zahradnik, Adv. Chem. Ser. 47, 332 (1965).Google Scholar
  110. 103.
    H. S. Spacil and C. S. Tedmon, Jr., J. Electrochem. Soc. 116, 1618, 1627 (1969).Google Scholar
  111. 104.
    P. A. Chreskasov and W. A. Fischer, Arch. Eisenhuttenwes. 42, 873 (1971).Google Scholar
  112. 105.
    H. W. den Hartog, P. J. Kreyger, and H. Shrink, Iron Steel Int. 46, 332 (1973).Google Scholar
  113. 106.
    H. Rickert, in Physics of Electrolytes, Vol. 2, ed., J. Hladik, Academic Press, New York (1972), p. 519.Google Scholar
  114. 107.
    J. H. Kennedy, in Physics of Electrolytes, ed. J. Hladik, Academic Press, New York (1972), p. 931.Google Scholar
  115. 108.
    T. Takahashi, inPhysics of Electrolytes, ed. J. Hladik, Academic Press, New York (1972), p. 989.Google Scholar
  116. 109.
    T. Takahashi and H. Inahara, Energy Convers. 11, 105 (1971).Google Scholar
  117. 110.
    F. Mortier and J. Fally, Fr. Demande 2,109,106; 2,109,015.Google Scholar
  118. 111.
    W. M. Heap, Brit. Pat. No. 1,261,317 (1972).Google Scholar
  119. 112.
    W. Fisher, H. Kleinsmager, F. J. Rohr, R. Steiner, and H. H. Eigsel, Chem. Ing. Tech. 44, 726 (1972).Google Scholar
  120. 113.
    University of Oklahoma, Energy Alternatives: A Comprehensive Analysis, U.S. Government Printing Office, Washington, D.C. (1975).Google Scholar
  121. 114.
    E. F. Sverdrup et al., Fuel Cell Research and Development, Report No. 57, U.S. Government Printing Office, Washington, D.C. (1970).Google Scholar
  122. 115.
    H. S. Isaacs, J. Electrochem. Soc. 119, 455 (1972).Google Scholar
  123. 116.
    B. Marincek and G. Heinke, Ger. Olfen. 2, 041, 836.Google Scholar
  124. 117.
    M. Kleitz, C. Deportes, and P. Fabry, Rev. Gen. Therm. 97, 19 (1970).Google Scholar
  125. 118.
    N. M. Beekmans and L. Heyne, Philips Tech. Rev. 31, 112 (1970).Google Scholar
  126. 118a.
    J. T. Kummer and N. Weber, paper presented at the Automotive Engineering Congress, Detroit, January 1967.Google Scholar
  127. 119.
    J. T. Kummer and N. Weber, in Energy Conversion Engineering, The American Society of Mechanical Engineers, New York (1967), p. 913.Google Scholar
  128. 120.
    J. T. Kummer and N. Weber, in Proceedings of the 21st Annual Power Sources Conference, Atlantic City, New Jersey, PSC Publications Committee (1967), p. 37.Google Scholar
  129. 121.
    N. K. Gupta and R. P. Tischer, J. Electrochem. Soc. 119, 1033 (1972).Google Scholar
  130. 122.
    T. G. Pearson and P. L. Robinson, J. Chem. Soc. 132, 1473 (1940).Google Scholar
  131. 123.
    J. T. Kummer, in Progress in Solid State Chemistry, vol. 7, eds. H. Reiss and J. O. McCaldin, Pergamon Press, New York, (1972), p. 141.Google Scholar
  132. 124.
    M. S. Whittingham and R. A. Huggins, inSolid State Chemistry, eds. R. S. Roth and S. J. Schneider Jr., Natl. Bur. Stand. U.S. Spec. Puhl. 364 (1971).Google Scholar
  133. 125.
    Y. Y. Yao and J. T. Kummer, Inorg. Nucl. Chem. 29, 2453 (1967).Google Scholar
  134. 126.
    J. D. Busi, in Proceedings of the Symposium on Batteries, Traction and Propulsion, 1972, ed. R. L. Kerr, Columbus Section, Electrochemical Society, Battelle Memorial Institute, Columbus, Ohio (1972), p. 195.Google Scholar
  135. 127.
    G. H. Gelb and N. A. Richardson, in Proceedings of the Symposium on Batteries, Traction and Propulsion, 1972, ed. R. L. Kerr, Columbus Section, Electrochemical Society, Battelle Memorial Institute, Columbus, Ohio (1972), p. 178.Google Scholar
  136. 128.
    S. Gratch, J. V. Petrocelli, R. P. Tischer, R. W. Minck, and T. J. Whalen, Proceedings of the 7th Intersociety Energy Conversion Engineering Conference, 1972, ACS, Washington, D.C. (1972), p. 38.Google Scholar
  137. 129.
    R. W. Minck, Proceedings of the 7th Intersociety Energy Conversion Engineering Conference, 1972, ACS, Washington, D.C. (1972), p. 42.Google Scholar
  138. 130.
    S. P. Mitoff, U.S. Pat. No. 3,740,268 (1973).Google Scholar
  139. 130a.
    W. Dale Compton, in Energy, Environment and Productivity, Proceedings of the First Symposium on Research Applied to National Needs, National Science Foundation, Washington, D.C., NSF 74–19 (1974).Google Scholar
  140. 131.
    J. L. Sudworth, Sulphur Inst. J. 8, 12 (1972).Google Scholar
  141. 132.
    J. L. Sudworth and M. D. Hames, in Power Sources, Vol. 3, ed. D. H. Collins, Oriel Press, Newcastle-upon-Tyne (1971), p. 227.Google Scholar
  142. 133.
    J. L. Sudworth, M. D. Hames, M. A. Storey, M. F. Azim, and A. R. Tilley, in Proceedings of the Eighth International Power Sources Symposium, Brighton, Sussex, England, 1972, International Power Sources Committee, Croydon, Surrey, England (1972), p. 1.Google Scholar
  143. 133a.
    J. L. Sudworth, in Fast Ion Transport in Solids. ed. W. van Gool, North-Holland, Amsterdam (1973), p. 581.Google Scholar
  144. 134.
    L. J. Miles and I. Wynn Jones, in Proceedings of the Eighth International Power Sources Symposium, Brighton, Sussex, England, 1972, International Power Sources Committee, Croydon, Surrey, England (1972), p. 245.Google Scholar
  145. 135.
    T. Nakabayashi, Ger. Offen. 2, 240, 278 (1973).Google Scholar
  146. 136.
    N. G. Bukun, E. A. Ukshe, and V. V. Evtushenko, Elektrokhimiya 9, 406 (1973).Google Scholar
  147. 137.
    N. G. Bukun, E. A. Ukshe, N. S. Lidorenko, and A. A. Lanin, U.S.S.R. Pat. 366, 517 (1973).Google Scholar
  148. 138.
    J. Fally, J. Richez, Y. Lazzennec, and C. Lasne, Fr. Demande, 2, 129, 864 (1972).Google Scholar
  149. 139.
    J. Fally and J. Richez, Fr. Demande, 2, 140, 318 (1973).Google Scholar
  150. 140.
    J. Fally, C. Lasne, and V. Lezennev, Fr. Demande 2, 142, 695 (1973).Google Scholar
  151. 140a.
    R. S. Gordon, presented at Workshop on Ceramics for Energy Applications, Columbus, Ohio (1975).Google Scholar
  152. 141.
    I. Wynn Jones, in Fast Ion Transport in Solids, ed. W. van Gool, North-Holland, Amsterdam (1973), p. 559.Google Scholar
  153. 142.
    J. Fally, C. Lasne, Y. Lazennec, and P. Margotin, J. Electrochem. Soc. 120, 1296 (1973).Google Scholar
  154. 142a.
    J. Lazennec, C. Lasne, P. Margotin, and J. Fally, J. Electrochem. Soc. 122, 734 (1975).Google Scholar
  155. 143.
    J. J. Werth, U.S. Pat. No. 3,718,505 (1973).Google Scholar
  156. 144.
    J. M. Thomas and A. J. White, J. Mater. Sci. 7, 838 (1972).Google Scholar
  157. 145.
    N. S. Choudhary, NASA TN D7322, 16 pp. (1973).Google Scholar
  158. 146.
    H. E. Kautz, J. Singer, W. Fielder, and J. S. Fordyc, NASA TN D7146, 10 pp. (1973).Google Scholar
  159. 147.
    N. Kimura, S. Suzuki, and S. Toshina, Denki Kagaku (Japan) 41, 22 (1973).Google Scholar
  160. 148.
    R. D. Armstrong, T. Dickinson, and J. Turner, J. Electroanal. Chem. Interfacial Electrochem. 44, 157 (1973).Google Scholar
  161. 149.
    B. Cleaver and A. J. Davies, Electrochim. Acta 18, 727, 733, 741 (1973).Google Scholar
  162. 150.
    G. J. Janz and R. P. T. Tomkins, Current Awareness Bulletin: Polysulfides, July 5, 1973, Molten Salts Data Chemistry Center, Polytechnic Institute, Troy, New York.Google Scholar
  163. 151.
    K. D. South, J. L. Sudworth, and J. G. Gibson, J. Electrochem. Soc. 119, 554 (1972).Google Scholar
  164. 152.
    M. N. Hull, Energy Corners. 10, 215 (1970).Google Scholar
  165. 153.
    E. J. Cairns and H. Shimotake, Science 64, 1347 (1969).Google Scholar
  166. 154.
    M. Barak, Proc. IEEE 117, 1561 (1970).Google Scholar
  167. 155.
    M. Barak, Electron. Power 18, 290 (1972).Google Scholar
  168. 156.
    S. Gross, in Proceedings of the Symposium on Batteries, Traction and Propulsion, 1972, ed. R. L. Kerr, Columbus Section, Electrochemical Society, Battelle Memorial Institute, Columbus, Ohio (1972), p. 9.Google Scholar
  169. 157.
    E. H. Hietbrink, J. McBreen, S. M. Selis, S. B. Tricklebank, and R. R. Witherspoon, in Electrochemistry of Cleaner Environments, ed. J. O’M. Bockris, Plenum Press, New York (1972), p. 47.Google Scholar
  170. 158.
    E. J. Cairns, in Critical Materials Problems in Energy Production, ed. C. Stein, Academic Press, New York (1976), p. 684.Google Scholar
  171. 157b.
    J. R. Birk, in Superionic Conductors, eds. G. D. Mahan and W. L. Roth, Plenum Press, New York, (1976), p. 1.Google Scholar
  172. 157c.
    S. P. Mitoff and J. B. Bush, Jr., J. Electrochem Soc. 122, 457 (1975).Google Scholar
  173. 157d.
    E. C. Gay, D. R. Visser, F. J. Martino, and K. E. Anderson, J. Electrochem. Soc. 123, 1591 (1976).Google Scholar
  174. 158.
    F. G. Will and S. P. Mitoff, Abstract No. 39, Boston, Massachusetts Meeting of the Electrochemical Society, October 7–11, 1973.Google Scholar
  175. 159.
    F. G. Will, R. R. Dubin, and J. J. Hess, Abstract No. 40, Boston, Massachusetts Meeting of the Electrochemical Society, October 7–11, 1973.Google Scholar
  176. 159a.
    J. H. Kennedy and A. F. Sammells, J. Electrochem. Soc. 121, 1 (1974).Google Scholar
  177. 160.
    R. T. Foley, J. Electrochem. Soc. 116, 13c (1969).Google Scholar
  178. 161.
    J. N. Mrgudich, in Encyclopedia of Electrochemistry, Reinhold, New York (1964).Google Scholar
  179. 162.
    B. B. Owens, in Advances in Electrochemistry and Electrochemical Engineering, Vol. 8, ed. C. W. Tobias, Wiley Interscience, New York, (1971), p. 1.Google Scholar
  180. 163.
    R. T. Foley, in Physics of Electrolytes, Vol. 2, ed. J. Hladik, Academic Press, London (1972), p. 960.Google Scholar
  181. 164.
    K. O. Hever, in Physics of Electrolytes, Vol. 2, ed. J. Hladik, Academic Press, London (1972), p. 809.Google Scholar
  182. 164a.
    C. C. Liang, in Fast Ion Transport in Solids, ed. W. Van Gool, North-Holland, Amsterdam (1973), p. 19.Google Scholar
  183. 164b.
    R. M. Dell, in Electrode Processes in Solid State Ionics, eds. M. Kleitz and J. Dupuy, Reidei, Dordrecht, (1976), p. 387.Google Scholar
  184. 164c.
    T. Tahahashi, in Super Ionic Conductors, eds. G. D. Mahan and W. L. Roth, Plenum Press, New York (1976), p. 379.Google Scholar
  185. 164d.
    B. B. Scholtens and W. van Gool, in Solid State Electrolytes, eds. P. Hagenmuller and W. van Gool, Academic Press, New York (1978), p. 451.Google Scholar
  186. 165.
    L. Heyne, Electrochim. Acta 15, 1251 (1970).Google Scholar
  187. 166.
    P. D. Greene, Electron. Power 18, 395 (1972).Google Scholar
  188. 167.
    T. Takahashi, J. Appi. Electrochem. 3, 79 (1973).Google Scholar
  189. 168.
    T. Takahashi and O. Yamamoto, Electrochim. Acta 11, 779 (1966).Google Scholar
  190. 169.
    B. B. Owens, G. R. Argue, and I. J. Groce, in Power Sources 2, ed. D. H. Collins, Pergamon Press, London (1970).Google Scholar
  191. 170.
    J. E. Oxley and B. B. Owens, Gould Ionics Inc., Report 70-ER-067A, (April 1970).Google Scholar
  192. 171.
    M. De Rossi, G. Pistoia, and B. Scrosati, J. Electrochem. Soc. 116, 1642 (1969).Google Scholar
  193. 172.
    B. Scrosati, M. Torroni, and A. D. Butherus, in Proceedings of the Eighth International Power Sources Symposium, Brighton, Sussex, England, 1972, International Power Sources Committee, Croydon, Surrey, England (1972).Google Scholar
  194. 173.
    B. Scrosati, J. Electrochem. Soc. 120, 78 (1973).Google Scholar
  195. 173a.
    M. Pampallona, A. Ricci, B. Scrosati, and C. A. Vincent, J. Appi. Electrochem. 6, 269 (1976).Google Scholar
  196. 174.
    D. V. Louzos, W. G. Darland, and G. W. Mellors, J. Electrochem. Soc. 120, 1151 (1973).Google Scholar
  197. 175.
    B. B. Owens, J. H. Christie, and G. T. Tiedeman, J. Electrochem: Soc. 118, 1144 (1971).Google Scholar
  198. 176.
    T. Takahashi, S. Ikeda, and O. Yamamoto, J. Electrochem. Soc. 119, 477 (1972).Google Scholar
  199. 177.
    K. Kitazawa and R. L. Coble, J. Am. Ceram. Soc. 57, 360 (1974).Google Scholar
  200. 178.
    M. De Rossi, M. L. Berardelli, and G. Fonseca, J. Electrochem. Soc. 120, 149 (1973).Google Scholar
  201. 179.
    J. H. Kennedy, F. Chen, and R. C. Miles, J. Electrochem. Soc. 120, 171 (1973).Google Scholar
  202. 180.
    K. O. Hever, J. Electrochem. Soc. 115, 830 (1968).Google Scholar
  203. 181.
    C. Tubandt, Handb. Exp. P-hys. 12(1), 383 (1932).Google Scholar
  204. 182.
    J. H. Kennedy, in Physics of Electrolytes, Vol. 2, ed. J. Hladik, Academic Press, London (1972).Google Scholar
  205. 183.
    J. L. Weininger, U.S. Pat. No. 2,923,546 (1960).Google Scholar
  206. 184.
    J. L. Weininger and H. Liebhafsky, U.S. Pat. No. 2,987,568 (1961).Google Scholar
  207. 185.
    B. Reuter and K. Hardel, Naturwissenschaften 48, 161 (1966).Google Scholar
  208. 186.
    B. B. Owens, J. S. Sprouse, and D. L. Warburton, Proc. of the 25th Power Sources Symposium, Atlantic City, New Jersey, May 1972, p. 8.Google Scholar
  209. 187.
    B. B. Owens, G. R. Argue, I. J. Groce, and L. D. Hermo, J. Electrochem. Soc. 116, 312 (1969).Google Scholar
  210. 188.
    T. Takahashi and O. Yamamoto, J. Electrochem. Soc. 117, 1 (1970).Google Scholar
  211. 189.
    G. R. Argue, B. B. Owens, and I. J. Groce, Proc. Ann. Power Sources Conf. 22, 103 (1968).Google Scholar
  212. 190.
    G. R. Argue and B. B. Owens, U.S. Pat. No. 3,443,997 (1969).Google Scholar
  213. 191.
    T. Takahashi, S. Ikeda, and O. Yamamoto, J. Electrochem. Soc. 120, 647 (1973).Google Scholar
  214. 192.
    J. K. Pargeter, J. Met. 20, 27 (1968).Google Scholar
  215. 193.
    W. A. Fischer, Arch. Eisenhuttenwes. 38, 442 (1967).Google Scholar
  216. 194.
    C. B. Alcock and S. Zador, J. Appi Electrochem. 2, 289 (1972).Google Scholar
  217. 195.
    L. Micheli, Res. Pubi. GMR-1352 of General Motors Research Lab., Warren, Michigan, 1973.Google Scholar
  218. 195a.
    E. C. Subbarao, in Proceedings of the International Symposium on Industrial Electrochemistry, Madras, India (1976).Google Scholar
  219. 196.
    E. K. Keler and E. N. Nikitin, J. Appi Chem. USSR 32, 2033 (1959).Google Scholar
  220. 197.
    W. H. Davenport, S. S. Kistler, W. M. Wheildon, and O. J. Whittmore, J. Am. Ceram. Soc. 30, 333 (1959).Google Scholar
  221. 197a.
    S. M. Lang and R. F. Geller, J. Am. Ceram. Soc. 34, 193 (1951). 197b. E. Rothwall, J. Sci. Instrum. 38, 191 (1961).Google Scholar
  222. 197c.
    A. M. Anthony, in Solid Electrolytes, eds. P. Hagenmuller and W. van Gool, Academic Press, New York (1978), p. 519.Google Scholar
  223. 198.
    M. Leipold and J. Taylor, in Temperature: Its Measurement and Control in Science and Industry, Vol. 3, Reinhold, New York (1962), p. 1150.Google Scholar
  224. 199.
    T. H. Neilson and M. Leipold, J. Am. Ceram. Soc. 46, 381 (1963).Google Scholar
  225. 200.
    P. Ya. Gokhstein and R. A. Khakin, Teplofiz. Vys. Temp. 7, 1031 (1968).Google Scholar
  226. 201.
    V. D. German, Yu. P. Kukota, and G. A. Lyubimov, Teplotekh. Probi Pyramogo Preobrazov. Energy (1969), p. 79.Google Scholar
  227. 202.
    M. Guillou, Rev. Gen. Therm. 8, 751 (1959).Google Scholar
  228. 203.
    L. N. Popova, L. M, Demidenko, D. N. Poluboyarinov, R. Ya. Popilskii, and V. S. Bakernov, Tr. Mosk. Khim. Tekhnol Inst. 63, 132 (1969).Google Scholar
  229. 204.
    P. Ya. Gokhstein and A. A. Safonov, Teplofiz. Vys. Temp. 8, 398 (1970).Google Scholar
  230. 205.
    S. K. Adams and R. E. W. Casselton, J. Am. Ceram. Soc. 53, 117 (1970).Google Scholar
  231. 206.
    R. E. W. Casselton, Phys. Stat. Solidi A 2, 571 (1970).Google Scholar
  232. 207.
    J. H. Kennedy, F. Chen, and J. Hunter, J. Electrochem. Soc. 124, 454 (1973).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • K. P. Jagannathan
    • 1
    • 4
  • S. K. Tiku
    • 2
    • 3
  • H. S. Ray
    • 1
  • A. Ghosh
    • 1
  • E. C. Subbarao
    • 1
  1. 1.Department of Metallurgical EngineeringIndian Institute of TechnologyKanpurIndia
  2. 2.Interdisciplinary Programme in Materials ScienceIndian Institute of TechnologyKanpurIndia
  3. 3.Department of Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA
  4. 4.Research and DevelopmentHindustan Steel Ltd.RanchiIndia

Personalised recommendations