Advertisement

Thermodynamic Properties of Oxide Systems

  • S. Seetharaman
  • K. P. Abraham
Chapter

Abstract

The high-temperature solid electrolyte galvanic cells have recently come into prominence on account of their numerous applications in many thermodynamic and kinetic investigations. The growing demand for materials for application at high temperatures stimulated interest in a systematic investigation of the thermodynamic properties of many oxide systems. Solid state galvanic cells with a ceramic electrolyte have been found to be highly suitable for these investigations. A significant amount of thermodynamic data pertaining to oxide systems has been collected by this technique. The technique has made possible the accurate study of a number of new oxide systems and non-stoichiometric compounds. The applications of these galvanic cells to the study of oxide systems is briefly surveyed and an account is given of the systems investigated.

Keywords

Thermodynamic Property Solid Electrolyte Oxide System Standard Free Energy Oxide Solid Electrolyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Schmalzried, in Metallurgical Chemistry, Symposium Proceedings of the National Physical Laboratory, Middlesex, ed. O. Kubaschewski, Her Majesty’s Stationery Office, London (1972), p. 39.Google Scholar
  2. 2.
    S. Pizzini and G. Bianchi, Chim. Ind. (Milan) 54, 224 (1972).Google Scholar
  3. 3.
    S. Seetharaman and K. P. Abraham, J. Sci. Ind. Res. (India) 32, 641 (1973).Google Scholar
  4. 4.
    K. Kiukkola and C. Wagner, J Electrochem. Soc. 63, 244 (1959).Google Scholar
  5. 5.
    Ya. I. Gerasimov, I. A. Vasil’Eva, T. P. Chusova, V. A. Geiderikh, and M. A. Timofuva, Russ. J. Phys. Chem. 36, 180 (1962).Google Scholar
  6. 6.
    H. Schmalzried, Z. Phys. Chem. 25, 178 (1960).Google Scholar
  7. 7.
    R. Benz and H. Schmalzried, Z. Phys. Chem. 29, 77 (1961).Google Scholar
  8. 8.
    R. A. Rapp, Trans. Met. Soc. AIME 227, 371 (1963).Google Scholar
  9. 9.
    B. C. H. Steele, in Electromotive Force Measurements in High Temperature Systems ed. C. B. Alcock, Institution of Mining and Metallurgy, London (1968), p. 20.Google Scholar
  10. 10.
    G. G. Charatte and S. N. Flengas, J. Electrochem. Soc. 115, 796 (1968).Google Scholar
  11. 11.
    R. W. Taylor and H. Schmalzried, J. Phys. Chem. 68, 2444 (1964).Google Scholar
  12. 12.
    Discussion on the “EMF Measurements” session, Thermodynamics, IAEA, Vienna (1965).Google Scholar
  13. 13.
    K. Goto and Y. Matsushita, J. Electrochem. Soc. Jpn. 35, 1 (1967).Google Scholar
  14. 14.
    R. A. Rapp and D. A. Shores, in Techniques of Metal Research, Vol. IV, Part 2, ed. R. A. Rapp, Wiley, New York (1970), p. 162.Google Scholar
  15. 15.
    C. Petot, E. G. Petot, and M. Rigaud, Can. Met. Quart. 10, 203 (1971).Google Scholar
  16. 16.
    K. Goto and W. Plushkell, in Physics of Electrolytes, Vol. 2, ed. J. Hladik, Academic Press, New York (1972), p. 563.Google Scholar
  17. 17.
    T. L. Markins and E. J. McIver, in Pluotonium 1965, Proceedings of the Third International Conference on Plutonium eds. A. E. McKay and M. B. Waldron, Chapman and Hall, London (1967), p. 845.Google Scholar
  18. 18.
    H. Tanaka, E. Kimura, A. Yamaguchi, and J. Moriyama, Nippon Ginzaku Gakkaish 36, 633 (1972).Google Scholar
  19. 19.
    J. S. Kachhawaha, M. P. Ganu, and V. B. Tare, Scripta Met. 7, 311 (1973).Google Scholar
  20. 20.
    T. N. Rezukhina and V. A. Levitskii, IZV. Akad. Nauk. SSSR Neorgan. Materialy 3, 138 (1967).Google Scholar
  21. 21.
    G. B. Barbi, Trans. Faraday Soc. 62, 1589 (1960).Google Scholar
  22. 22.
    A. V. Ramana Rao and V. B. Tare, Scripta Met. 5, 807 (1971).Google Scholar
  23. 23.
    F. A. Kuznetsov, V. I. Belyi, T. N. Rezukhina, and Ya. I. Gerasimov, Dokl. Akad. Nauk SSSR 139, 1405 (1961).Google Scholar
  24. 24.
    T. L. Markins, R. J. Bones, and V. J. Wheeler, Proc. Brit. Ceram. Soc. 8, 51 (1967).Google Scholar
  25. 25.
    Yu. D. Tret’yakov and H. Schmalzried, Ber. Bunsenges. Phys. Chem. 65, 396 (1965).Google Scholar
  26. 26.
    W. G. Bugden and J. N. Pratt, Trans. Inst. Min. Met. Sec. C 79, C221 (1970).Google Scholar
  27. 27.
    G. Chattopadhyay, O. M. Sreedharan, and M. S. Chandrasekaraiah, presented at the Indo-Soviet Conference on Solid State Materials, Bangalore, December 1972.Google Scholar
  28. 28.
    T. Matsumura, Can. J. Phys. 36, 1383 (1962).Google Scholar
  29. 29.
    V. A. Levitskii, T. N. Rezukhina, and A. S. Guzei, Elektrokhimiya 1, 237 (1965).Google Scholar
  30. 30.
    Y. Sato, K. Nishimura, I. Sakamoto, T. Yamamura, and Y. Iwano, Jpn. J. Pwd. Met all. 2, 229 (1972).Google Scholar
  31. 31.
    L. R. Bidwell, J. Electrochem. Soc. 114, 30 (1967).Google Scholar
  32. 32.
    C. B. Alcock and T. N. Belford, Trans. Faraday Soc. 60, 822 (1964).Google Scholar
  33. 33.
    G. B. Barbi, Gazz. Chim. Ital. 100, 64 (1970).Google Scholar
  34. 34.
    Y. Matsushita and K. Goto, in Thermodynamics, Vol. 1, IAEA, Vienna (1966), p. 108; also Tetsu-To-Hagane (Overseas) 4, 310 (1964).Google Scholar
  35. 35.
    S. C. Schaefer, U.S. Bur. Mines R.I.7549 (1971).Google Scholar
  36. 36.
    S. F. Pal’Guev and A. D. Nevimin, Trudy Inst. Elektrokhim. Akad. Nauk. SSSR Uralfilial 1, 111 (1960).Google Scholar
  37. 37.
    W. A. Dench and O. Kubaschewski, High Temp. High Pres. 1, 357 (1969).Google Scholar
  38. 38.
    J. Osterwald, Z. Phys. Chem. N.F. 49, 138 (1966).Google Scholar
  39. 39.
    A. A. Briggs, W. A. Dench, and W. Slough, J. Chem. Thermodyn. 3, 43 (1971).Google Scholar
  40. 40.
    Yu. D. Tret’yakov, Izv. Akad. Nauk. SSSR Neorg. Materialy 2, 501 (1966).Google Scholar
  41. 41.
    K. Suzuki and K. Sambongi, Tetsu-To-Hagane 58, 1579 (1972).Google Scholar
  42. 42.
    B. E. F. Fender and F. D. Riley, J. Phys. Chem. Solids 30, 793 (1969).Google Scholar
  43. 43.
    B. C. H. Steele, in Electromotive Force Measurements in High Temperature Systems ed. C. B. Alcock, Institution of Mining and Metallurgy, London (1968), p. 16.Google Scholar
  44. 44.
    H. F. Rizzo, R. S. Gordon, and I. B. Cutler, J. Electrochem. Soc. 116, 266 (1969).Google Scholar
  45. 45.
    A. Vasileva, S. N. Nudratsova, L. B. Stepina, and A. N. Kornilov, Russ. J. Phys. Chem. 43, 1767 (1969).Google Scholar
  46. 46.
    H. Peters and G. Mann, Z. Elektrochem. 63, 244 (1959).Google Scholar
  47. 47.
    G. B. Barbi, J. Phys. Chem. 68, 2912 (1964).Google Scholar
  48. 48.
    N. Birks, Nature 210, 407 (1966).Google Scholar
  49. 49.
    G. A. Roeder and W. W. Smeltzer, J. Electrochem. Soc. 111, 1074 (1964).Google Scholar
  50. 50.
    M. S. Yakovleva and S. M. Ariya, Vestn. Leningr. Univ. 18(1b) Ser. Fiz. Khim. 3, 130 (1963); Zh. Fiz. Khim. 44, 508 (1970).Google Scholar
  51. 51.
    Y. Wanibe, Y. Yamauchi, K. Kawai, and H. Sakao, Trans. Iron Steel Inst. Jpn. 12, 472 (1972).Google Scholar
  52. 52.
    P. E. C. Bryant and W. W. Smeltzer, J. Electrochem. Soc. 116, 1409 (1969).Google Scholar
  53. 53.
    G. B. Barbi, J. Phys. Chem. 68, 1025 (1964).Google Scholar
  54. 54.
    R. N. Blumenthal and D. H. Whitmore, J. Am. Ceram. Soc. 44, 508 (1961).Google Scholar
  55. 55.
    R. E. Carter, J. Am. Ceram. Soc. 43, 448 (1960).Google Scholar
  56. 56.
    K. A. Kleindinst and D. A. Stevenson, J. Chem. Thermodyn. 4 565 (1972).Google Scholar
  57. 56a.
    J. V. Smith and D. Chatterji, J. Am. Ceram. Soc. 56, 288 (1973).Google Scholar
  58. 57.
    W. A. Fisher and D. Janke, Arch. Eisenhuttenwes. 39, 89 (1968).Google Scholar
  59. 58.
    G. R. Newns and J. M. Pelmore, J. Chem. Soc. A 2, 360 (1968).Google Scholar
  60. 59.
    D. Chatterji and J. V. Smith, J. Electrochem. Soc. 120, 770 (1973).Google Scholar
  61. 60.
    D. Chatterji and R. W. Vest, J. Am. Ceram. Soc. 55, 575 (1972).Google Scholar
  62. 60a.
    K. A. Klinedinst and D. A. Stevenson, J. Chem. Thermodyn. 5, 21 (1973).Google Scholar
  63. 61.
    H. Kleykamp and J. Paneth, J. Inorg. Nucl. Chem. 65, 477 (1973).Google Scholar
  64. 62.
    E. S. Ramakrishnan, presented at the Indo-Soviet Conference on Solid-State Materials, Bangalore, December 1972.Google Scholar
  65. 63.
    E. S. Ramakrishnan, Scripta Metall. 7, 305 (1973).Google Scholar
  66. 64.
    C. B. Alcock and S. Zador, Electrochim. Acta. 12, 673 (1967).Google Scholar
  67. 65.
    K. Schwerdtfeger, Trans. Met. Soc. AIME 239, 1276 (1967).Google Scholar
  68. 66.
    J. S. Huebner and M. Sato, Am. Miner. 55, 934 (1970).Google Scholar
  69. 67.
    V. N. Drobyshev and T. N. Rezukhina, Russ. J. Phys. Chem. 39, 75 (1965).Google Scholar
  70. 68.
    V. M. Zhukovskii, T. M. Yaneshkevich, V. P. Lebedkin, V. L. Volkov, and A. D. Nevimin, Russ. J. Phys. Chem. 46, 1542 (1972).Google Scholar
  71. 69.
    G. B. Barbi, Z. Naturforsch. 23, 800 (1968).Google Scholar
  72. 70.
    V. I. Lavreht’ev, Ya. I. Gerasimov, and T. N. Rezukhina, Dokl. Akad. Nauk SSSR 136, 1372 (1961).Google Scholar
  73. 71.
    S. Ignatowicz and M. W. Davies, J. Less Common Met. 15, 100 (1968).Google Scholar
  74. 72.
    V. N. Drobyshev and T. N. Rezukhina, Trans. Iron Steel Inst. Jpn. 12, 472 (1972).Google Scholar
  75. 73.
    M.Hoch, A. S. Iyer, and J. Nelkin, J. Phys. Chem. Solids 23, 1463 (1962).Google Scholar
  76. 74.
    R. N. Blumenthal, J. B. Moser, and D. H. Whitmore, J. Am. Ceram. Soc. 48, 617 (1965).Google Scholar
  77. 75.
    G. B. Barbi, J. Less Common Met. to be published.Google Scholar
  78. 76.
    C. Sellars and F. Maak, Trans. Met. Soc. AIME 236, 457 (1966).Google Scholar
  79. 77.
    T. L. Markins, L. E. J. Roberts, and A. Walter, inThermodynamics, IAEA, Vienna (1962), p. 693.Google Scholar
  80. 78.
    B. C. H. Steele and C. B. Alcock, Trans. Met. Soc. AIME 233, 1359 (1965).Google Scholar
  81. 79.
    S. Pizzini and R. Morletti, J. Electrochem. Soc. 114, 1179 (1967).Google Scholar
  82. 80.
    T. L. Markins and M. H. Rand, in Thermodynamics, Vol. I, IAEA, Vienna (1966), p. 145.Google Scholar
  83. 81.
    V. A. Levitskii, T. N. Razukhina, and V. G. Dneprova, Elektrokhimiya 1, 933 (1965).Google Scholar
  84. 82.
    C. B. Alcock and G. P. Stavropoulos, Can. Met. Quart. 10, 257 (1971).Google Scholar
  85. 83.
    B. Minushkin, G. Kissel, and V. S. Williams, U.S.A. Report BNL-50176, No. 45 (1969).Google Scholar
  86. 84.
    J. I. Franco and H. Kleykamp, Ber. Bunsenges. Phys. Chem. 76, 691 (1972).Google Scholar
  87. 85.
    H. Kleykamp, Z. Phys. Chem. N.F. 71, 142 (1970).Google Scholar
  88. 86.
    U. Lott, H. Rickert, and C. Keller, J. Inorg. Nucl. Chem. 31, 3427 (1969).Google Scholar
  89. 87.
    T. L. Markins and M. H. Rand, in Thermodynamics, Vol. I, IAEA, Vienna (1966), p. 145.Google Scholar
  90. 88.
    J. I. Franco and H. Kleykamp, Ber. Bunsenges. Phys. Chem. 75, 934 (1971).Google Scholar
  91. 89.
    H. Kleykamp, Z. Phys. Chem. N.F. 66, 131 (1969).Google Scholar
  92. 90.
    S. Pizzini and L. Rozzi, Z. Naturforsch. 26, 177 (1971).Google Scholar
  93. 91.
    D. Chatterji and R. W. Vest, J. Am. Ceram. Soc. 54, 73 (1971).Google Scholar
  94. 92.
    F. J. Salzano, H. S. Isaacs, and B. Minushkin, J. Electrochem. Soc. 118, 412 (1971).Google Scholar
  95. 93.
    T. N. Belford and C. B. Alcock, Trans. Faraday Soc. 61, 443 (1965).Google Scholar
  96. 94.
    Z. Kozuka, O. P. Siahaan, and J. Moriyama, Trans. Jpn. Inst. Met. 9, 200 (1968).Google Scholar
  97. 95.
    T. Oishi, T. Hiruna, and J. Moriyama, Nippon Ginzaku Gakkaishi 31, 481 (1972).Google Scholar
  98. 96.
    G. B. Barbi, Z. Naturforsch. 25, 1515 (1970).Google Scholar
  99. 97.
    V. G. Dneprova, T. N. Rezukhina, and Ya. I. Gerasimov, Russ. J. Phys. Chem. 42, 802 (1968).Google Scholar
  100. 98.
    M S. Yakovleva and S. M. Ariya, Russ. J. Phys. Chem. 37, 880 (1963).Google Scholar
  101. 99.
    S. Zador, in Electromotive Force Measurements in High Temperature Systems ed. C. B. Alcock, Institution of Mining and Metallurgy, London (1968), p. 145.Google Scholar
  102. 100.
    R. N. Blumenthal and D. H. Whitmore, J. Electrochem. Soc. 110, 92 (1963).Google Scholar
  103. 101.
    D. I. Marchidan and S. Mater, Rev. Roum. Chim. 15, 491 (1970).Google Scholar
  104. 102.
    T. H. Etsell and S. N. Flengas, Chem. Rev. 70, 339 (1970).Google Scholar
  105. 103.
    S. Aronson and J. Belle, J. Chem. Phys. 29, 151 (1958).Google Scholar
  106. 104.
    T. L. Markins and R. J. Bones, Atomic Energy Research Establishment Report AERE R4042 (1963).Google Scholar
  107. 105.
    H. Okinaka, K. Kozuka, and S. Kachi,. Trans. Jpn Inst. Met. 12, 44 (1971).Google Scholar
  108. 106.
    F. E. Rizzo, L. R. Bidwell, and D. F. Frank, Trans. Met. Soc. AIME 239, 1901 (1967).Google Scholar
  109. 107.
    Ya. I. Gerasimov, I. A. Vasil’eva, T. P. Chusova, G. A. Greiderikh, and M. A. Timofuva, Dokl. Akad. Nauk SSSR 134, 1350 (1960).Google Scholar
  110. 108.
    T. N. Rezukhina and Yu. G. Golovanova, Izv. Akad. Nauk. SSSR Neorg. Mater. 3, 867 (1967).Google Scholar
  111. 109.
    R. F. Ksenofontova, I. A. Vask’eva, and Ya. I. Gerasimov, Dokl. Akad. Nauk SSSR 143, 1705 (1962).Google Scholar
  112. 110.
    T. C. Wilder, Trans. Met. Soc. AIME 245, 1370 (1969).Google Scholar
  113. 111.
    H. Schmalzried, Z. Phys. Chem. N.F. 25, 178 (1960).Google Scholar
  114. 112.
    H. Schmalzried and Yu. D. Tret’yakov, Ber. Bunsenges. Phys. Chem. 70, 180 (1966).Google Scholar
  115. 113.
    M. Sreedharan and M. S. Chandresekaraiah, Mater. Res. Bull. 7, 1135 (1972).Google Scholar
  116. 114.
    A. A. Slobodyanyuk, Yu. B. Tret’yakov, and A. F. Bessnov, Russ. J. Phys. Chem. 45 1069 (1971).Google Scholar
  117. 115.
    V. F. Komorov and Yu. D. Tret’yakov, Russ. J. Phys. Chem. 45, 985 (1971).Google Scholar
  118. 116.
    A. A. Slobodyanyuk, Yu. D. Tret’yakov, and A. F. Bessanov, Russ. J. Phys. Chem. 46 1687 (1972).Google Scholar
  119. 117.
    Yu. D. Tret’yakov, V. F. Komerov, N. A. Prosvirnira, and I. B. Katsensk, J. Solid State Chem. 5, 157 (1972).Google Scholar
  120. 118.
    A. A. Slobodyanyuk, Yu. D. Tret’yakov, and A. F. Bessanov, Izv. Vyssh. Ucheb. Zaved. Tsvet. Met. 15, 18 (1972).Google Scholar
  121. 119.
    T. N. Razukhina, V. A. Levilskii, and P. Ozhigov, Russ. J. Phys. Chem. 37, 358 (1963).Google Scholar
  122. 120.
    T. N. Razukhina, V. A. Levilskii, and B. A. Istomin, Elektrokhimiya 1, 467 (1965).Google Scholar
  123. 121.
    V. F. Komarov, N. N. Obinikov, and Yu. D. Tret’yakov, Izv. Akad. Nauk. SSSR Neorg. Mater. 3, 1064 (1967).Google Scholar
  124. 122.
    Yu. D. Tret’yakov, N. N. Oleynikov, Yu. G. Metlin, and A. P. Erastova, J. Solid State Chem. 5, 191 (1972).Google Scholar
  125. 123.
    A. S. Guzei, V. I. Lovren’ev, and T. I. Bulgakova, Izv. Akad. Nauk SSSR Neorg. Mater. 3, 860 (1967).Google Scholar
  126. 124.
    V. I. Lovrent’ev, A. S. Guzej, T. I. Bulgakova, and G. A. Sokolova, Russ. J. Phys. Chem. 141, 1676 (1967).Google Scholar
  127. 125.
    A. S. Guzei, V. I. Lavrenl’ev, T. I. Bulgakova, O. S. Zaitsev, and I. Rosinfel’d, Izv. Akad. Nauk SSSR Neorg. Mater. 3, 909 (1967).Google Scholar
  128. 126.
    I V. Gordeev, Yu. D. Tret’yakov, and K. G. Khomyakov, Russ. J. Inorg. Chem. 9, 89 (1969).Google Scholar
  129. 127.
    V. I. Roshchupkin and V. I. Lavrent’ev, Izv. Akad. Nauk SSSR Neorg. Mater. 3, 551 (1967).Google Scholar
  130. 128.
    Yu. D. Tret’yakov, Neorg. Mater. 1, 1928 (1965).Google Scholar
  131. 129.
    O. Kubaschewski, High Temp. High Pres. 4, 1 (1972).Google Scholar
  132. 130.
    D. V. Vecher and A. A. Vecher, Russ. J. Phys. Chem. 11, 1565 (1967).Google Scholar
  133. 131.
    V. A. Levitskii and D. D. Ratani, Izv. Akad. Nauk SSSR Met. 6, 65 (1970).Google Scholar
  134. 132.
    V. A. Levitskii, M. Ya. Frenkel, and T. N. Rezukhina, Elektrokhimiya 1, 137.Google Scholar
  135. 133.
    A. N. Golubenko and T. N. Rezukhina, Russ. J. Phys. Chem. 39, 1587 (1965).Google Scholar
  136. 134.
    T. N. Rezukhina, V. I. Lavrent’yev, V. A. Levitskii, and F. A. Kuznetsov, Russ. J. Phys. Chem. 35, 671 (1961).Google Scholar
  137. 135.
    V. A. Levitskii and T. N. Rezukhina, Izv. Akad. Nauk SSSR Neorg. Mater. 2, 145 (1966).Google Scholar
  138. 136.
    A. N. Golubenko, O. A. Ustinou, and T. N. Rezukhina, Russ. J. Phys. Chem. 39, 616 (1965).Google Scholar
  139. 137.
    V. A. Levitskii, S. G. Popov, and D. D. Ratiani, Russ. J. Phys. Chem. 44, 749 (1970).Google Scholar
  140. 138.
    L. I. Armyanova and S. I. Filippov, Izv. Vyssh. Ucheb. Zaved. Chem. Met. 9, 8 (1972).Google Scholar
  141. 139.
    T. N. Razukhina, V. A. Levitskii, and N. M. Kazimirova, Russ. J. Phys. Chem. 35, 1305 (1961).Google Scholar
  142. 140.
    T. N. Razukhina and V. A. Levitskii, Russ. J. Phys. Chem. 37, 1227 (1963).Google Scholar
  143. 141.
    V. A. Levitskii, V. N. Chentsov, Yu. Ya. Skolis, and Yu. G. Golovanova, Russ. J. Phys. Chem. 46, 151 (1972).Google Scholar
  144. 142.
    V. A. Levitskii and T. N. Rezukhina, Russ. J. Phys. Chem. 37, 599 (1963).Google Scholar
  145. 143.
    H. J. Engell, Z. Phys. Chem. N.F. 35, 192 (1962).Google Scholar
  146. 144.
    V. Gordeev, Yu. D. Tret’yakov, and K. G. Khomyakov, Rept. Vestn. Mosk. Univ. No. 6 (1963), p. 59.Google Scholar
  147. 145.
    A. A. Lykasov and V. A. Kozheurov, Fiz. Khim. Osn. Provizvod. State, Mater. Simp. Met. Metalloved., 1968 (Pub. 1971), p. 196.Google Scholar
  148. 146.
    K K. Prasad, S. Seetharaman, and K. P. Abraham, Trans. Indian Inst. Met. 22, 7 (1969).Google Scholar
  149. 147.
    Yu. D. Tret’yakov, Yu. G. Saksonov, and I. V. Gordeev, Izv. Akad. Nauk SSSR Neorg. Mater. 1, 413 (1965).Google Scholar
  150. 148.
    K. Schwerettfeger and A. Muan, Trans. Met. Soc. AIME 239, 1114 (1967).Google Scholar
  151. 149.
    S. Seetharaman and K. P. Abraham, Script. Metall. 3, 911 (1969).Google Scholar
  152. 150.
    S. Seetharaman and K. P. Abraham, J. Electrochem. Soc. India 20, 54 (1971).Google Scholar
  153. 151.
    E. Aukrvst and A. Muan, Trans. Met. Soc. AIME 227, 1378 (1963).Google Scholar
  154. 152.
    G. P. Popov and S. F. Strokstova, Russ. J. Phys. Chem. 46, 894 (1972).Google Scholar
  155. 153.
    S. Seetharaman and K. P. Abraham, Trans. Inst. Mining Met. Sec. C. 77, C209 (1968).Google Scholar
  156. 154.
    D. J. Cameron and A. E. Unger, Met. Trans. 1, 2615 (1970).Google Scholar
  157. 155.
    W. C. Hahn Jr. and A. Muan, J. Phys. Chem. Solids 19, 338 (1961).Google Scholar
  158. 156.
    S. Seetharaman and K. P. Abraham, Trans. Indian Inst. Met. 25, 16 (1972).Google Scholar
  159. 157.
    V. Biggers and A. Muan, J. Am. Ceram. Soc. 50, 230 (1966).Google Scholar
  160. 158.
    S. Pizzini, R. Morolotti, and V. Wagner, J. Electrochem. Soc. 116, 915 (1969).Google Scholar
  161. 159.
    S. Pizzini, R. Morolotti, and V. Wagner, J. Electrochem. Soc. 117, 1529 (1970).Google Scholar
  162. 160.
    J Deren and G. Rog, Bull. Acad. Pol. Sci. Ser. Sci. Chim. 17, 327 (1969).Google Scholar
  163. 161.
    J. Deren and G. Rog, Bull. Acad. Pol. Sci. Ser. Sci. Chim. 15, 491 (1968).Google Scholar
  164. 162.
    J. Deren and G. Rog, Akad. Nauk — Oddzial Wkrakowie Praci Komisji Coramiczniz. Ceramika 16, 28 (1961).Google Scholar
  165. 163.
    J. Deren, K. Dyrek, J. Pozniczek, M. Rekas, G. Rog, and L. Wenda, Bull. Acad. Pol. Sci. Ser. Sci. Chim. 18, 65 (1970).Google Scholar
  166. 164.
    J. Deren and G. Rog, Bull. Acad. Pol. Sci. Ser. Sci. Chim. 18, 115 (1970).Google Scholar
  167. 165.
    S. Aronson and J. C. Clayton, J. Chem. Phys. 35, 1055 (1961).Google Scholar
  168. 166.
    H. Tanaka, E. Kimura, A. Yamaguchi, and J. Moriyama, Nippon Ginzaku Gakkaishi 36, 633 (1972).Google Scholar
  169. 167.
    G. A. Roeder and W. W. Smeltzer, J. Electrochem. Soc. 111, 1074 (1964).Google Scholar
  170. 168.
    K Schwerettfeger and A. Muan, Trans. Met. Soc. AIME 239, 1114 (1967).Google Scholar
  171. 169.
    H. Schmalzried and Yu. D. Tret’yakov, Ber. Bunsenges. Phys. Chem. 70, 180 (1966).Google Scholar
  172. 170.
    I. V. Gordeev and Yu. D. Tret’yakov, Russ. J. Inorg. Chem. 8, 943 (1963).Google Scholar
  173. 171.
    I. V. Gordeev and Yu. D. Tret’yakov, Vestn. Mosk. Univ. Ser. II Khim. 18, 32 (1963).Google Scholar
  174. 172.
    Z. Kozuka and C. S. Samis, Met. Trans. 1, 871 (1970).Google Scholar
  175. 173.
    Y. Matsushita and K. Goto, Trans. Iron Steel Inst. Jpn. 6, 131 (1966).Google Scholar
  176. 174.
    O. A. Esin, Russ. J. Inorg. Chem. 2, 237 (1957).Google Scholar
  177. 175.
    O. A. Esin, Dokl. Akad. Nauk SSSR 88, 713 (1953).Google Scholar
  178. 176.
    O. A. Esin, Zh. Neorg. Khim. 2, 87 (1957).Google Scholar
  179. 177.
    K. Sanbongi and Y. Omori, Sci. Rep. Tohoku Univ. 35 (1969).Google Scholar
  180. 178.
    W. C. Hahn, Jr. and A. Muan, J. Phys. Chem. Solids 19, 338 (1961).Google Scholar
  181. 179.
    Z. Kozuka, O. P. Siahaan, and J. Moriyama, Trans. Jpn. Inst. Met. 9, 200 (1968).Google Scholar
  182. 180.
    G. Papst and H. Schmalzried, Z. Phys. Chem. N.F. 82, 206 (1972).Google Scholar
  183. 181.
    Y. Matsushita and K. Goto, Tetsu-To-Hagane (Overseas) 4, 128 (1964); J. Fac. Eng. Univ. Tokyo Ser. B. 27, 217 (1964).Google Scholar
  184. 182.
    G. G. Charatte and S. N. Flengas, Can. Met. Quart. 71, 191 (1968).Google Scholar
  185. 183.
    M L. Kapoor and M. G. Frohberg, Can. Met. Quatr. 7, 191 (1968).Google Scholar
  186. 184.
    C. B. Alcock, EMF Measurements in High Temperature System, Institution of Mining and Metallurgy, London (1968).Google Scholar
  187. 185.
    I N. Erimenko and S. I. Filippov, Izv. Vyesh. Ucheb. Zaved. Chem. Met. 10, 68 (1967).Google Scholar
  188. 186.
    B. Indyk and H. B. Bell, J. Iron Steel Inst. 208, 1015 (1970).Google Scholar
  189. 187.
    L N. Barmin and P. M. Shurjgin, Fiz. Khim. Rasplavlenshlakov 195, (1971).Google Scholar
  190. 188.
    A. M. Lacy and J. A. Pask, J. Am. Ceram. Soc. 53, 559 (1970).Google Scholar
  191. 189.
    A. M. Lacy and J. A. Pask, J. Am. Ceram. Soc. 53, 676 (1970).Google Scholar
  192. 190.
    A. M. Lacy and J. A. Pask, J. Am. Ceram. Soc. 54, 236 (1971).Google Scholar
  193. 191.
    C. Wagner, in Progress in Solid State Chemistry, Vol. 6, ed. H. Reiss and J. O. McCaldin, Pergamon Press, London (1971), p. 1.Google Scholar
  194. 192.
    A Ezis, J. C. Burt, and R. A. Krakowski, J. Am. Ceram. Soc. 53, 521 (1970).Google Scholar
  195. 193.
    A A. Lykasov, Yu. S. Kuznetsov, E. I. Pilkov, I. Shishkov, and V. A. Kozhevrov, Russ. J. Phys. Chem. 43, 1754 (1969).Google Scholar
  196. 194.
    H. G. Sockel and H. Schmalzried, Ber. Bunsenges. Phys. Chem. 72, 745 (1968).Google Scholar
  197. 195.
    F. E. Rizzo and J. V. Smith, J. Phys. Chem. 72, 485 (1968).Google Scholar
  198. 196.
    H. F. Rizzo, R. S. Gordon, and I. B. Cutler, in Mass Transport in Oxides, ed. J. B. Wachtman, Jr., U.S. Natl. Bur. Stand. Spec. Publ. 296, Washington, D.C. (1968).Google Scholar
  199. 197.
    H. Asao, K. Ono, A. Yamaguchi, and J. Moriyama, Mem. Fac. Eng. Kyoto Univ. 32, 66 (1970).Google Scholar
  200. 198.
    V. I. Roshchupkin and V. I. Larvrent’ev, Izv. Akad. Nauk SSSR Neorg. Mater. 2, 712 (1966).Google Scholar
  201. 199.
    C B. Alcock, S. Zador, and B. C. H. Steele, Proc. Brit. Ceram. Soc. 8, 231 (1967).Google Scholar
  202. 200.
    Yu. D. Tret’yakov and R. A. Rapp, Trans. Met. Soc. AIME 245, 1235 (1969).Google Scholar
  203. 201.
    A. N. Golubenko and T. N. Rezukhina, Izv. Akad. Nauk SSSR Neorg. Mater. 3, 101 (1967).Google Scholar
  204. 202.
    K Kiukkola, Acta Chem. Scand. 16, 327 (1962).Google Scholar
  205. 203.
    D I. Marchidan and S. Matei, Rev. Roum. Chim. 17, 1053 (1971).Google Scholar
  206. 204.
    M Hoch and D. Ramakrishnan, J. Phys. Chem. Solids 25, 869 (1964).Google Scholar
  207. 205.
    S. Aronson and J. C. Clayton, J. Chem. Phys. 32, 749 (1960).Google Scholar
  208. 206.
    J C. Burt and R. A. Krakowski, J. Am. Ceram. Soc. 54, 415 (1971).Google Scholar
  209. 207.
    K K. Prasad, Trans. Ind. Inst. Met. 27, 259 (1974).Google Scholar
  210. 208.
    T N Benz and C. Wagner, J Phys. Chem. 65, 1368 (1961).Google Scholar
  211. 209.
    D V. Vecher and A. A. Vecher, Zh. Fiz. Khim 41, 2916 (1967).Google Scholar
  212. 210.
    T. N. Rezukhina, V. A. Levitskii, and M. Ya. Frenkel, Izv. Akad. Nauk SSSR Neorg. Mater. 2, 325 (1965).Google Scholar
  213. 211.
    T. N. Rezukhina and Ya. Baginsko, Elektrokhimiya 3, 1146 (1967).Google Scholar
  214. 212.
    K K. Prasad and K. P. Abraham, Proceedings of the Symposium on Materials Science, BARC-NAL, Bangalore (1969).Google Scholar
  215. 213.
    V. G. Druprova, T. N. Rezukhina, and Ya. I. Gerasimov, Dokl. Akad. Nauk SSSR Fiz. Khim. 178, 135 (1968).Google Scholar
  216. 214.
    S Raghavan and K. P. Abraham, J. Electrochem. Soc. India 22, 149 (1973).Google Scholar
  217. 215.
    V. A. Levitskii, Yu. Ya. Skolis, V. N. Chentsov, and Yo. G. Golovanova, Russ. J. Phys. Chem. 46, 814 (1972).Google Scholar
  218. 216.
    A. K. Shah, K. K. Prasad, and K. P. Abraham, Trans. Ind. Inst. Met. 24, 40 (1970).Google Scholar
  219. 217.
    Yu. D. Tret’yakov and A. R. Kaul, in Physics of Electrolytes ed. J. Hladik, Academic Press, New York (1972), p. 632.Google Scholar
  220. K K. Prasad, Ph.D. thesis, Indian Institute of Science, Bangalore, 1972.Google Scholar
  221. 219.
    S Pizzini and R. Morlotti, Trans. Faraday Soc. 68, 1601 (1972).Google Scholar
  222. 220.
    W. Nickerson and C. Altstetter, Script. Metall. 7, 229 (1973).Google Scholar
  223. 221.
    T N. Rezukhina and Z. V. Proshina, Izv. Akad. Nauk SSSR Neorgan. Mater. 3, 138 (1967).Google Scholar
  224. 222.
    S. Sato, T. Yokokawa, H. Kita, and K. Niwa, J. Electrochem. Soc. 119, 1524 (1972).Google Scholar
  225. 223.
    G. M. Mehrotra, M. G. Frohberg, and M. L. Kapoor, Z. Phys. Chem. N.F. 99, 304 (1976).Google Scholar
  226. 224.
    G. Rog, B. Langanke, G. Borchandt, and H. Schmalzried, J. Chem. Thermodyn. 6, 113 (1974).Google Scholar
  227. 225.
    I A. Vasileva, I. S. Sukhushina, Zh. V. Granovskaya, R. F. Balabaeva, and A. F. Maiorova, Russ. J. Phys. Chem. 49, 1275 (1975).Google Scholar
  228. 226.
    Z. Moser and K. Fitzner, Rudy Met. Niezelas. 20, 510 (1975).Google Scholar
  229. 227.
    D Janke and W. A. Fischer, Arch. Eisenhuttenwes. 46, 755 (1975).Google Scholar
  230. 228.
    F N. Mazandarany and R. D. Pehlke, J. Electrochem. Soc. 121, 711 (1974).Google Scholar
  231. 229.
    L A. Pugliese and G. R. Fitterer, Met. Trans. 1, 1997 (1970).Google Scholar
  232. 230.
    I. Katayama, N. Kemori, and Z. Kozuka, Nippon Kinzoku Gakkaishi 39, 188 (1975).Google Scholar
  233. 231.
    I. Katayama, Z. Kozuka, and Sensaku, Tech. Rep. Osaka Univ. 23, 1121 (1973).Google Scholar
  234. 232.
    G Palamutcu, Ph.D. thesis, Imperial College, London University (1972).Google Scholar
  235. 233.
    I Katayama, J. Shibata, and Z. Kozuka, Nippon Kinzoku Gakkaishi 39, 990 (1975).Google Scholar
  236. 234.
    K T. Jacob, C. B. Alcock, and J. C. Chan, Acta Metall. 22 545 (1974).Google Scholar
  237. 235.
    A. E. Grau and S. N. Flengas, J. Electrochem. Soc. 123, 352 (1976).Google Scholar
  238. 236.
    R. G. Sommer and E. D. Cater, J Electrochem. Soc. 122, 1391 (1975).Google Scholar
  239. 237.
    M Iwase, K. Fujimura, and T. Mon, Nippon Kinzoku Gakkaishi 39, 1118 (1975).Google Scholar
  240. 238.
    H Charle and J. Osterwald, Z. Phys. Chem. N.F. 99, 199 (1976).Google Scholar
  241. 239.
    E. S. Ramakrishnan, O. M. Sreedharan, and M. S. Chandrasekharaiah, J. Electrochem. Soc. 122, 328 (1975).Google Scholar
  242. 240.
    G. Petot-Ervas, R. Farhi, and C. Petot, J. Chem. Thermodyn. 7, 1131 (1975).Google Scholar
  243. 241.
    S. Seetharaman and L. I. Staansson, Scan. J. Met. 6(3), 143 (1977).Google Scholar
  244. 241a.
    T. A. Ramanarayanan and A. K. Bar, Met. Trans. 9B, 485 (1978).Google Scholar
  245. 242.
    K T. Jacob and C. B. Alcock, J. Am. Ceram. Soc. 58, 192 (1975).Google Scholar
  246. 243.
    J C. Chan, C. B. Alcock, and K. T. Jacob, Can. Met. Quart. 12, 439 (1973).Google Scholar
  247. 244.
    G. Rog, Rocz. Chem. 50, 147 (1976).Google Scholar
  248. 245.
    O M. Sreedharan, M. D. Karkhanavala, and M. S. Chandrasekharaiah, Conf. Int. Thermodyn. Chim. (C.R.) 4th 3, 115 (1975).Google Scholar
  249. 246.
    K T. Jacob, Thermochim. Acta 15, 79 (1976).Google Scholar
  250. 247.
    S. Shiomi, N. Sano, and Y. Matsushita, Tetsu-To-Hagane 61, 177 (1975).Google Scholar
  251. 248.
    L I. Armyanova and S. I. Filippov, Kinet. Zakonomern. Sovmestnogo Vosstanov Okislor Zheleza Drugikh Mater. (1973), p. 56; Chem. Abstr. 85, 38677U (1976).Google Scholar
  252. 249.
    V A. Lentok, Yu. G. Golovanova, S. G. Popov, and V. N. Chentsov, Russ. J. Phys. Chem. 49, 971 (1975).Google Scholar
  253. 250.
    K T. Jacob and J. C. Chan, J. Electrochem. Soc. 121, 534 (1974).Google Scholar
  254. 251.
    T. N. Rezukhina and T. A. Kashina, J. Chem. Thermodyn. 8, 513 (1976).Google Scholar
  255. 252.
    T. A. Kashina and T. N. Rezukhina, Russ. J. Phys. Chem. 49, 755 (1975).Google Scholar
  256. 253.
    E. Rosen, Chem. Scr. 8, 43 (1975).Google Scholar
  257. 254.
    H. Paulsson, E. Rosen, and R. Tegman, Chem. Scr. 8, 193 (1975).Google Scholar
  258. 255.
    V A. Lentski, V. N. Chentsov, Yu. Khekimov, and Ya. I. Gerasimov, Russ. J. Phys. Chem. 49, 347 (1975).Google Scholar
  259. 256.
    K T. Jacob and C. B. Alcock, Met. Trans. 68, 215 (1975).Google Scholar
  260. 257.
    S. Yamanchi, K. Fueki, T. Mukaibo, and C. Nakayama, Bull. Chem. Soc. Jpn. 48, 1039 (1975).Google Scholar
  261. 258.
    T. N. Rezukhina and T. A. Kashina, J. Chem. Thermodyn. 8, 519 (1976).Google Scholar
  262. 259.
    T. N. Rezukhina and T. A. Kashina, Zh. Fiz. Khim. 48, 2894 (1974).Google Scholar
  263. 260.
    I A. Levitskii and Yu. Ya. Skolis, Chem. Thermodyn. 6, 1181 (1974).Google Scholar
  264. 261.
    I A. Vasil’eva, Ya. I. Gerasimov, and A. F. Maiorova, Dokl. Akad. Nauk SSSR 226, 369 (1976).Google Scholar
  265. 262.
    I A. Vasil’eva, Ya. I. Gerasimov, A. F. Maiorova, and I. V. Pirvova, Dokl. Akad. Nauk SSSR 221, 865 (1975).Google Scholar
  266. 263.
    D I. Marchidan and S. Tanasescu, Rev. Roum. Chim. 19, 1435 (1974).Google Scholar
  267. 264.
    D I. Marchidan and S. Tanasescu, Rev. Roum. Chim. 20, 1365 (1975).Google Scholar
  268. 265.
    D I. Marchidan and S. Tanasescu, Conf. Int. Thermodyn. Chim. [C.R.] 4th 3, 189 (1975).Google Scholar
  269. 266.
    I A. Vasil’eva and I. S. Sukhushina, J. Chem. Thermodyn. 7, 5 (1975).Google Scholar
  270. 267.
    I A. Vasil’eva, I. S. Sukhushina, and R. I. Balabaeva, J. Chem. Thermodyn. 7, 319 (1975).Google Scholar
  271. 268.
    I A. Vasil’eva, L. P. Ogorodova, and L. I. Stepanets, Vestn. Mosk. Univ. Khim. 17, 47 (1976).Google Scholar
  272. 269.
    S. Labus and G. Rog, Rocz. Chem. 49, 339 (1975).Google Scholar
  273. 270.
    K Torkor and R. Schneider, J. Solid State Chem. 18, 89 (1976).Google Scholar
  274. 271.
    M G. Rog, J. Deren, P. Grange, and H. Charcosset, Bull. Soc. Chim. France, No. 3–4, 471 (1975).Google Scholar
  275. 272.
    I A. Maksutov and A. A. Lykasov, Izv. Vysch. Uchib. Zaved. Chem. Met. 2, 18 (1974).Google Scholar
  276. 273.
    M Rigand, G. Giovannetti, and M. Hone, J. Chem. Thermodyn. 6, 993 (1974).Google Scholar
  277. 274.
    V. B. Tare and B. Deo, Int. Conf. Thermodyn. Chim. [C.R.] 4th 3, 104 (1975).Google Scholar
  278. 275.
    M Fredriksson and E. Rosen, Chem. Scr. 9, 118 (1976).Google Scholar
  279. 276.
    B Deo and V. B. Tare, Mater. Res. Bull. 11, 469 (1976).Google Scholar
  280. 277.
    B Deo, J. S. Kachhawaha, and V. B. Tare, Mater. Res. Bull. 11, 653 (1976).Google Scholar
  281. 278.
    K T. Jacob and C. B. Alcock, High Temp. High Pres. 7, 433 (1975).Google Scholar
  282. 279.
    S. Raghavan, Ph.D. thesis, Indian Institute of Science, Bangalore, 1976.Google Scholar
  283. 280.
    J S. Kachhawaha, M. P. Ganu, and V. B. Tare, Scr. Metall. 7, 311 (1973).Google Scholar
  284. 281.
    V. V. Gorlach and V. M. Lisitsyn, Fiz. Tverd. Tela 16, 1988 (1974).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • S. Seetharaman
    • 1
  • K. P. Abraham
    • 2
  1. 1.Metallurgisk KemiInstitution for Metallurgy, Kungl Teckniska HogskolanSweden
  2. 2.Department of MetallurgyIndian Institute of ScienceBangaloreIndia

Personalised recommendations