Advertisement

Thermodynamic Studies of Alloys and Intermetallic Compounds

  • M. S. Chandrasekharaiah
  • O. M. Sreedharan
  • G. Chattopadhyay
Chapter

Abstract

The thermodynamic description of alloy systems has been and still is in terms of phenomenological thermodynamics. The chemical potential, µ i α , of a component i in the alloy phase α as a function of composition and temperature is in principle a sufficient property to characterize the alloy system. Hence the development of experimental methods specific to alloy thermodynamics has been in obtaining more reliable chemical potential data over wider temperature and composition ranges. No single experimental method has been proved suitable for the study of the varieties of alloys encountered in practice.

Keywords

Intermetallic Compound Acta Metall Liquid Alloy Metal Fluoride Oxide Electrolyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Kubaschewski and W. Slough, Progr. Mater. Sci. 14, 1 (1969).Google Scholar
  2. 2.
    K. Kiukkola and C. Wagner, J. Electrochem. Soc. 104, 308, 379 (1957).Google Scholar
  3. 3.
    B. C. H. Steele, in Electromotive Force Measurements in High Temperature Systems ed. C. B. Alcock, Institution of Mining and Metallurgy, London (1968), p. 1.Google Scholar
  4. 4.
    T. H. Etsell and S. N. Flengas, Chem. Rev. 70, 339 (1970).Google Scholar
  5. 5.
    H. Schmalzried, ed., Thermodynamics, Vol. I, IAEA, Vienna, (1966), p. 97.Google Scholar
  6. 6.
    R. A. Rapp and D. A. Shores, in Techniques in Metals Research, Vol. IV, part 2 ed. R. A. Rapp, Interscience, New York (1971), p. 122.Google Scholar
  7. 7.
    T. L. Markin, R. J. Bones, and V. J. Wheeler, Proc. Brit. Ceram. Soc. 8, 175 (1967).Google Scholar
  8. 8.
    B. C. H. Steele and C. B. Alcock, Trans. AIME 233, 1359 (1965).Google Scholar
  9. 9.
    M. Sato, in Research Techniques for High Pressure and High Temperature, ed. G. C. Ulmer, Springer-Verlag, Berlin (1971), p. 43.Google Scholar
  10. 10.
    D. O. Rayleigh, in Progress in Solid State Chemistry, Vol. 3, ed. H. Reiss, Pergamon Press, New York, (1970), p. 83.Google Scholar
  11. 11.
    D. O. Rayleigh, in Electroanalytical Chemistry, Vol. 6, ed. A. J. Bard, Marcel Dekker, New York, (1972), p. 87.Google Scholar
  12. 12.
    W. L. Worrell and J. L. Iskoe, in Fast Ion Transport in Solids, ed. W. Van Gool, North-Holland, Amsterdam (1973), p. 513.Google Scholar
  13. 13.
    E. T. Turkdogan and R. J. Fuehan, Can. Met. Quart. 11, 371 (1972).Google Scholar
  14. 14.
    R. N. Blumenthal and D. H. Whitmore, J. Electrochem. Soc. 110, 92 (1963).Google Scholar
  15. 15.
    D. A. Shores and R. A. Rapp, J. Electrochem. Soc. 118, 1107 (1971).Google Scholar
  16. 16.
    C. Gatellier, K. Torssell, M. Olette, M. Meysson, M. Chastant, A. Rist, and P. Vicens, Rev. Met. 66, 673 (1969).Google Scholar
  17. 17.
    W. H. Skelton and J. W. Patterson, J. Less Common Met., 31, 47 (1973).Google Scholar
  18. 18.
    Chattopadhyay and M. S. Chandrasekharaiah, unpublished work.Google Scholar
  19. 19.
    N. L. Lofgren and E. I. Mclver, U.K. AEA-AERE-R 5169 (1965).Google Scholar
  20. 20.
    C. E. Holley, Jr., and E. K. Storms, in Thermodynamics of Nuclear Materials, IAEA Vienna, (1967), p. 397.Google Scholar
  21. 21.
    E. K. Storms, The Refractory Carbides, Academic Press, New York (1967).Google Scholar
  22. 22.
    K. Gingerich and S. Aronson, J. Phys. Chem 70, 2517 (1966).Google Scholar
  23. 23.
    O. Kubaschewski, High Temp. High Press. 4, 1 (1972).Google Scholar
  24. 24.
    O. M. Sreedharan, M. S. Chandrasekharaiah, and M.D.Karkhanarala, High Temp. Sci., 9, 109 (1977).Google Scholar
  25. 25.
    C. B. Alcock and G. P. Stavropoulos, J. Am. Ceram. Soc. 54, 436 (1971).Google Scholar
  26. 26.
    O. Kubaschewski, Naturwissenschaften 55, 525 (1968).Google Scholar
  27. 27.
    R. A. Rapp and F. Maak, Acta Met. 10, 63 (1962).Google Scholar
  28. 28.
    G. B. Barbi, Ann. Chim. (Rome) 56, 62 (1966).Google Scholar
  29. 29.
    H. Davies and W. W. Smeltzer, J. Electrochem. Soc. 119, 1362 (1972).Google Scholar
  30. 30.
    A Kubik and C. B. Alcock, Met. Sci. J 1 19 (1967).Google Scholar
  31. 31.
    S. C. Singhal and W. L. Worrell, Met. Trans. 4, 895 (1973).Google Scholar
  32. 32.
    S. C. Singhal and W. L. Worrell, Met. Trans. 4, 1125 (1973).Google Scholar
  33. 33.
    A U. Seybolt, J. Electrochem. Soc. 111, 697 (1964).Google Scholar
  34. 34.
    L. R. Bidwell, W. J. Schultz, and R. K. Sues, Acta Metall. 15, 1143 (1967).Google Scholar
  35. 35.
    A W. Bryant, W. G. Bugden, and J. N. Pratt, Acta Metall. 18, 101 (1970).Google Scholar
  36. 36.
    W. H. Skelton, N. J. Magnani, and J. C. Smith, Met. Trans. 1, 1833 (1970).Google Scholar
  37. 37.
    W. H. Skelton, N. J. Magnani, and J. C. Smith, Met. Trans. 2, 473 (1971).Google Scholar
  38. 38.
    T. N. Rezukhina and B. S. Pokarev, J. Chem. Thermodyn. 3, 369 (1971).Google Scholar
  39. 39.
    C. R. Cavanaugh and J. F. Elliott, Trans. AIME 230, 633 (1964).Google Scholar
  40. 40.
    T. C. Wilder and W. E. Galin, Trans. AIME 245 1287 (1969).Google Scholar
  41. 41.
    U. V. Chowdary and A. Ghosh, J. Electrochem. Soc. 117, 1024 (1970).Google Scholar
  42. 42.
    K. A. Kleinedinst, M. V. Rao, and D. A. Stevenson, J. Electrochem. Soc 119, 1261 (1972).Google Scholar
  43. 43.
    S. K. Das and A. Ghosh, Met. Trans. 3, 803 (1972).Google Scholar
  44. 44.
    R. J. Fruehan, Trans. AIME 245, 1215 (1969).Google Scholar
  45. 45.
    L. A. Pugliese and G. R. Fitterer, Met. Trans. 1, 1997 (1970).Google Scholar
  46. 46.
    C. H. P. Lupis, “Thermodynamic Formalism of Metallic Solutions,” in Liquid Metals ed. S. Z. Beer, Marcel Dekker, New York (1972), p. 1.Google Scholar
  47. 47.
    C. H. P. Lupis and J. F. Elliott, Acta Metall. 14, 529 (1966); 15, 265 (1967).Google Scholar
  48. 48.
    C. H. P. Lupis and J. F. Elliott, Trans. AIME 233, 829 (1965).Google Scholar
  49. 49.
    L. S. Darken, Trans. AIME 239, 90 (1967).Google Scholar
  50. 50.
    P. J. Roychowdhuri and A. Ghosh, Met. Trans. 2, 2171 (1971).Google Scholar
  51. 51.
    R. J. Fruehan, Met. Trans. 1, 865 (1970).Google Scholar
  52. 52.
    T. A. Ramanarayanan and R. A. Rapp, Met. Trans. 3, 3239 (1972).Google Scholar
  53. 53.
    R. Baker and J. M. West, J. Iron Steel Inst. 204, 12 (1966).Google Scholar
  54. 54.
    R. J. Fruehan, I. J. Martonik, and E. T. Turkdogan, Trans. AIME 245, 1501 (1969).Google Scholar
  55. 55.
    R. J. Fruehan, Met. Trans. 1, 3403 (1970).Google Scholar
  56. 56.
    K. Schwerdtfeger, Trans. AIME 239, 1276 (1967).Google Scholar
  57. 57.
    T. N. Belford and C. B. Alcock, Trans. Faraday Soc. 60, 822 (1964).Google Scholar
  58. 58.
    T. N. Belford and C. B. Alcock, Trans. Faraday Soc. 61, 443 (1965).Google Scholar
  59. 59.
    T. C. Wilder, Trans. AIME 236, 1035 (1966).Google Scholar
  60. 60.
    C. M. Diaz, C. R. Masson, and F. D. Richardson, Trans. Inst. Min. Met. 75, CI 83 (1966).Google Scholar
  61. 61.
    R. J. Fruehan, Met. Trans. 1, 2083 (1970).Google Scholar
  62. 62.
    R. J. Fruehan and F. D. Richardson, Trans. AIME 245, 1721 (1966).Google Scholar
  63. 63.
    C. R. Nanda and G. H. Geiger, Met. Trans. 1, 1235 (1970).Google Scholar
  64. 64.
    C. R. Nanda and G. H. Geiger, Met. Trans. 2, 1101 (1971).Google Scholar
  65. 65.
    K. T. Jacob and J. H. E. Jeffes, Trans. Inst. Min. Met. 80, C32, C181 (1971).Google Scholar
  66. 66.
    G. Bandopadhyay and H. S. Ray, Met. Trans. 2, 3055 (1971).Google Scholar
  67. 67.
    K. Goto, M. Sasable, and M. Someno, Trans. AIME 242, 1757 (1968).Google Scholar
  68. 68.
    S. Honma, N. Sano, and Y. Matsushita, Met. Trans. 2, 1494 (1971).Google Scholar
  69. 69.
    K. T. Jacob, S. K. Seshadri, and F. D. Richardson, Trans. Inst. Min. Met. 79, C275 (1970).Google Scholar
  70. 70.
    C. H. P. Lupis and J. F. Elliott, Trans. AIME 233, 829 (1965).Google Scholar
  71. 71.
    J. F. Elliott, Trans. AIME 236, 130 (1966).Google Scholar
  72. 72.
    C. B. Alcock and F. D. Richardson, Acta Met. 8, 882 (1960).Google Scholar
  73. 73.
    G. R. Belton and E. S. Tankins, Trans. AIME 233, 1892 (1963).Google Scholar
  74. 74.
    K. T. Jacob and C. B. Alcock, Acta Metall. 20, 221 (1972).Google Scholar
  75. 75.
    S. Aronson and J. Sadofsky, J. Inorg. Nucl. Chem. 27, 1769 (1965).Google Scholar
  76. 76.
    J. Satow, Nucl. Mat. 21, 249, 255 (1967).Google Scholar
  77. 77.
    F. Moattar and J. S. Anderson, Trans. Faraday Soc. 67, 2303 (1971).Google Scholar
  78. 78.
    H. Tanaka, Y. Kishida, A. Yamaguchi, and J. Moriyama, J. Jpn. Inst. Met. 35, 997 (1971).Google Scholar
  79. 79.
    W. A. Fischer, Chem. Anal. (Warsaw) 16, 975 (1971).Google Scholar
  80. 80.
    W. Plushkell and H. J. Engell, Z. Metallkd. 56, 450 (1965).Google Scholar
  81. 81.
    W. A. Fischer and W. Ackermann, Arch. Eisenhuttenwes. 36, 643, 695 (1965); 37, 43 (1966).Google Scholar
  82. 82.
    J. Osterwald, Z. Phys. Chem. (N.F.) 49, 138 (1966).Google Scholar
  83. 83.
    H. Rickert and A. A. Elmiligy, Z. Metallkd. 59, 635 (1968).Google Scholar
  84. 84.
    J. M. Dompas and J. Van Melle, J. Inst. Met. (London) 98, 304 (1970).Google Scholar
  85. 85.
    C. M. Diaz and F. D. Richardson, Trans. Inst. Min. Met. 76, C196 (1967); 75, C183 (1966).Google Scholar
  86. 86.
    C. M. Diaz and F. D. Richardson, in Electromotive Force Measurements in High Temperature Systems, ed. C. B. Alcock, Institution of Mining and Metallurgy, London (1968), p. 29.Google Scholar
  87. 87.
    J. M. Dompas and L. Hens, Belgium Non Ferrous Metal Research Association Conference, Liege, BNFMRA, Paper No. 9, October 1971.Google Scholar
  88. 88.
    J. M. Dompas and P. C. Lockyer, Met. Trans. 3, 2597 (1972).Google Scholar
  89. 89.
    J. M. Dompas and J. Van Melle, J. Met. 26, 443 (1972).Google Scholar
  90. 90.
    M. M. El Naggar and N. A. I. Parlee, Met. Trans. 1, 2975 (1970); 2, 909 (1971).Google Scholar
  91. 91.
    T. H. Etsell and S. N. Flengas, J. Electrochem. Soc. 119, 198 (1972).Google Scholar
  92. 92.
    A. D. Kulkarni, R. E. Johnson, and G. W. Perbix, J. Inst. Met. 99, 15 (1971).Google Scholar
  93. 93.
    T. Oishi, A. Yamaguchi, and J. Moriyama, Nippon Kogyo Kaishi 88, 103 (1972).Google Scholar
  94. 94.
    J. Osterwald, Z. Metallkd. 59, 573 (1968).Google Scholar
  95. 95.
    W. P. Thompson and P. Tarassoff, Can. Met. Quart 10, 315 (1971).Google Scholar
  96. 96.
    I. Taukshara, Nippon Konzokku Gakkaish 34 679 (1970)Google Scholar
  97. 97.
    H. Rickert and H. Wagner, Electrochim. Acta 11, 83 (1966).Google Scholar
  98. 98.
    M. G. Fröhberg and P. M. Mathew, Schweiz. Arch. 38, 251 (1972).Google Scholar
  99. 99.
    M. Olette, C. Gatellier, and F. Torssell, Berg Huettenmaenn. Monatsch. 113, 484 (1968).Google Scholar
  100. 100.
    C. Gatellier and M. Olette, C.R. Acad. Sci. Ser. C 266, 1133 (1968).Google Scholar
  101. 101.
    Von H. Boeck and E. Teichert, Stahl Eisen 89, 61 (1969).Google Scholar
  102. 102.
    L. Brhacek, T. Myslivec, and A. Golonks, Hutn. Listy 26, 87 (1971).Google Scholar
  103. 103.
    P. Catoul, P. Tyou and A. Hans, Rep. C.N.R.M. (Liege) No. 11, 57 (1967).Google Scholar
  104. 104.
    P. Catoul and A. Hans, C.N.R.M. (Brussels) 27 (1971).Google Scholar
  105. 105.
    P. Catoul and A. Hans, C.N.R.M. (Liege) 4 (1969).Google Scholar
  106. 106.
    D. A. Dukelow, J. M. Steltzer, and G. F. Koons, J. Met. 23 (12), 22 (1971).Google Scholar
  107. 107.
    E. J. Turkdogan and R. J. Fruehan, General Meeting A.I.S.I. May 1968, A.I.S.I. Yearbook 279–301 (1968).Google Scholar
  108. 108.
    H. J. Engell, W. Esche, and E. Schulte, Hoesch Ber. 4/67, 146 (1967).Google Scholar
  109. 109.
    W. A. Fischer and M. Haussmann, Arch. Eìsenhuttenwes. 37, 959 (1966).Google Scholar
  110. 110.
    W. A. Fischer and D. Janke, Arch. Eìsenhuttenwes. 39, 89 (1968).Google Scholar
  111. 111.
    W. A. Fischer, Berg Huetenmaen. Monatsch. 113 (3), 141 (1968).Google Scholar
  112. 112.
    W. A. Fischer, D. Janke, and W. Ackermann, Arch. Eìsenhuttenwes. 41, 361 (1970).Google Scholar
  113. 113.
    W. A. Fischer and D. Janke, Arch. Eìsenhuttenwes. 41, 1027 (1970); 44, 15 (1973).Google Scholar
  114. 114.
    G. R. Fitterer, J Met. 18, 961 (1966).Google Scholar
  115. 115.
    G. R. Fitterer, C. D. Cassler, and V. L. Vierbicky, J. Met. 21 (8), 46 (1969); 20 (6), 74 (1968).Google Scholar
  116. 116.
    G. R. Fitterer, C. D. Cassler, and J. I. Nurminen, NASA Grant NGR 39-011-067, 1970.Google Scholar
  117. 117.
    G. R. Fitterer, Instrum. Iron Steel Ind. 20, 48 (1970).Google Scholar
  118. 118.
    E. Forster and H. Richter, Arch. Eìsenhuttenwes. 40, 475 (1969).Google Scholar
  119. 119.
    K. Goto and Y. Matsushita, Tetsu To Hagane 50, 1818 (1964).Google Scholar
  120. 120.
    K. Goto and Y. Matsushita, Tetsu To Hagane 50, 1821 (1964).Google Scholar
  121. 121.
    B. Korousic, Rud-Met. Zr. 1, 43 (1970).Google Scholar
  122. 122.
    Von L. Logdandy, E. Forster, W. Klapdar, and H. Richter, Stahl Eisen 89, 704 (1969).Google Scholar
  123. 123.
    W. Loscher, Arch. Eìsenhuttenwes. 40, 479 (1969).Google Scholar
  124. 124.
    M. Macozek and Z. Buzek, Hutn. Listy 27, 394 (1972).Google Scholar
  125. 125.
    Y. Matsushita and K. Goto, Trans. I S.I.J. 6, 131 (1966).Google Scholar
  126. 126.
    M. Ohtani and K. Sambongi, Tetsu To Hagane 49, 22 (1963).Google Scholar
  127. 127.
    J. K. Pargeter, Can. Met. Quart. 6, 21 (1967).Google Scholar
  128. 128.
    J. K. Pargeter, J. Met. 20 (10), 27 (1968).Google Scholar
  129. 129.
    J. K. Pargeter and D. K. Faurchou, J. Met. 21, 46 (1969).Google Scholar
  130. 130.
    S. R. Richards, D. A. J. Swinkels, and J. B. Henderson, paper presented at the International Conference on Science and Technology, Iron and Steel, Tokyo, September 7–11, 1970.Google Scholar
  131. 131.
    C. K. Russell, R. J. Fruehan, and R. S. Rittiger, J. Met. 23 (11), 44 (1971).Google Scholar
  132. 132.
    K. Sambongi, M. Ohtani, Y. Omori, and H. Inove, Tetsu To Hagane 50, 1823 (1964); Iron Steel Inst. Jpn. I.S.I.J. 6, 76 (1966).Google Scholar
  133. 133.
    K. Schwerdtfeger and H. J. Engell, Arch. Eìsenhuttenwes. 35, 533 (1964).Google Scholar
  134. 134.
    K. H. Ulrich and K. Borowski, Arch. Eìsenhuttenwes. 39, 259 (1968).Google Scholar
  135. 135.
    K. P. Abraham, Trans. Indian Inst. Met. 22, 5 (1969).Google Scholar
  136. 136.
    Z. Buzek and A. Hatla, Freiberg. Forschungsch. Met. 117, 59 (1969).Google Scholar
  137. 137.
    F. W. Euler and W. Loscher, Hoesch. Ber. 3, 15 (1966).Google Scholar
  138. 138.
    R. Kirchin, Dissertation, Techn. Hochschule, 1971.Google Scholar
  139. 139.
    B. Shuh, B. Korousic, and B. Marincek, Schweiz, Arch. 34, 380 (1968).Google Scholar
  140. 140.
    Y. Matsushita and K. Goto, in Thermodynamics, Vol. I, ed. H. Schmalzried, IAEA, Vienna (1966), p. 111.Google Scholar
  141. 141.
    R. J. Fruehan, Trans. AIME 242, 2007 (1968).Google Scholar
  142. 142.
    W. A. Dench and O. Kubaschewski, High Temp. High Press. 1, 357 (1969).Google Scholar
  143. 143.
    K. Schwerdtfeger and A. Muan, Acta Metall. 13, 509 (1965).Google Scholar
  144. 144.
    L. R. Bidwell, F. E. Rizzo, and J. V. Smith, Acta Metall. 18, 1013 (1969).Google Scholar
  145. 145.
    V. N. Drobyshev and T. N. Rezukhina, Russ. J. Phys. Chem. 39, 75 (1970).Google Scholar
  146. 146.
    L. R. Bidwell and R. Speiser, Acta Metall. 13, 61 (1965).Google Scholar
  147. 147.
    C. M. Sellars and F. Maak, Trans. AIME 236, 457 (1966).Google Scholar
  148. 148.
    C. B. Alcock, K. T. Jacob, and T. Palmutau, Acta Metall. 21, 1003 (1973).Google Scholar
  149. 149.
    L. Staffanson, L. Bentell, and I. Svenson, Scand. J. Met. 3, 153 (1974).Google Scholar
  150. 150.
    K. T. Jacob and J. H. E. Jeffes, J. Chem. Thermodyn. 5, 365 (1973).Google Scholar
  151. 151.
    W. G. Bugden and J. N. Pratt, J. Chem. Thermodyn. 1, 353 (1969).Google Scholar
  152. 152.
    J. Troudsen and P. Bolsaitis, Met. Trans. 1, 2023 (1970).Google Scholar
  153. 153.
    C. B. Alcock and A. Kubik, Acta Metall. 17, 437 (1969).Google Scholar
  154. 154.
    P. C. Lidster and H. B. Bell, Trans. AI ME 245, 2273 (1969).Google Scholar
  155. 155.
    H. Tanaka, Y. Kishida, T. Kotani, and J. Moriyama, J. Jpn. Inst. Met. 37, 568 (1973).Google Scholar
  156. 156.
    C. Wagner, Acta Metall. 21, 1297 (1973).Google Scholar
  157. 157.
    S. C. Singhal and W. L. Worrell, Metallurgical Chemistry Symposium 1971 held at Brunei University, ed. O. Kubaschewski, Her Majesty’s Stationery Office, London (1972), p. 65.Google Scholar
  158. 158.
    E. Fromm, J. Less Common Met. 22, 139 (1970).Google Scholar
  159. 159.
    D. C. Bartosik, P. K. Raychoudhuri, and D. H. Whitmore, 3rd International Conference on Chemical Thermodynamics, Baden, September 1973, paper 9/4.Google Scholar
  160. 160.
    J. N. Pratt, J. M. Bird, and A. W. Bryant, 3rd International Conference on Chemical Thermodynamics, Baden, September 1973, paper 9/7.Google Scholar
  161. 161.
    Y. Matsushita and K. Goto, J. Faculty Eng. Tokyo Univ. 27, 217 (1964).Google Scholar
  162. 162.
    R. J. Fruehan, Trans. AIME 242, 2007 (1968).Google Scholar
  163. 163.
    A. D. Kulkarni and R. E. Johnson, Met. Trans. 4, 1723 (1973).Google Scholar
  164. 164.
    D. Kulkarni, Met. Trans. 4, 1713 (1973).Google Scholar
  165. 165.
    R. J. Heus and J. J. Egan, Z. Phys. Chem. N.F. 74, 108 (1971).Google Scholar
  166. 166.
    Samir Abu Ali, V. V. Samokhval, U. S. Geidrikh, and A. A. Vecher, Russ. J. Phys. Chem. 46, 139 (1972).Google Scholar
  167. 167.
    V. V. Samokhval and A. A. Vecher, Russ. J. Phys. Chem. 42, 340 (1968).Google Scholar
  168. 168.
    T. N. Rezukhina and Z. V. Proshina, Russ. J. Phys. Chem. 36, 333 (1962).Google Scholar
  169. 169.
    J. J. Egan, W. Moy, and J. Bracker, in Thermodynamics of Nuclear Materials IAEA, Vienna (1962), p. 163.Google Scholar
  170. 170.
    J. J. Egan, J. Phys. Chem. 68, 978 (1964).Google Scholar
  171. 171.
    W. K. Bek and J. J. Egan, Electrochem. Soc. 113, 396 (1966).Google Scholar
  172. 172.
    S. Aronson and A. Auskern, in Thermodynamics, Vol. I, IAEA, Vienna (1966), p. 165.Google Scholar
  173. 173.
    W. Nickerson and C. Altstetter, Scripta Met. 7, 377 (1973)Google Scholar
  174. 174.
    S. Aronson, J. Inorg. Nucl. Chem. 29, 1611 (1967).Google Scholar
  175. 175.
    A. Kleykamp. Ber. Bunsenges. Phys. Chem. 73, 354 (1969).Google Scholar
  176. 176.
    V. N. Drobyshev, T. N. Rezukhina, and L. A. Tarasova, Russ. J. Phys. Chem. 39, 70 (1965).Google Scholar
  177. 177.
    V. N. Drobyshev and T. N. Rezukhina, Russ. J. Phys. Chem. 39, 75 (1965).Google Scholar
  178. 178.
    V. N. Drobyshev and T. N. Rezukhina, Izv. Akad. Nauk SSSR, Metall., 156 (1966).Google Scholar
  179. 178a.
    S. K. Lau, Ph.D. thesis, University of Pennsylvania, 1978.Google Scholar
  180. 179.
    P. J. Meschter and W. L. Worrell, Met. Trans. 8A, 503 (1977).Google Scholar
  181. 180.
    H. Kleykamp and M. Murabayashi, 3rd International Conference on Chemical Thermodynamics, Baden, paper 9/8a (1973).Google Scholar
  182. 181.
    P. J. Meschter and W. L. Worrell, Met. Trans. 7A, 299 (1976).Google Scholar
  183. 182.
    W. H. Skelton, N. J. Magnani, and J. F. Smith, Met. Trans. 4, 917 (1973).Google Scholar
  184. 183.
    T. N. Rezukhina, 3rd International Conference on Chemical Thermodynamics, Baden, Paper 9/6, 1973.Google Scholar
  185. 184.
    B Predel and U. Schallner, Mater. Sci. Eng. 10, 249 (1972).Google Scholar
  186. 185.
    H. B. Bell, J. P. Hafra, F. H. Pullard, and P. J. Spencer, Met. Sci. J. 7, 185 (1973).Google Scholar
  187. 186.
    H. Davies and W. W. Smeltzer, J. Electrochem. Soc. 121, 543 (1974).Google Scholar
  188. 187.
    I. Katayama, H. Shimatani, and Z. Kozuka, J. Jpn. Inst. Met. 37, 509 (1973).Google Scholar
  189. 188.
    I Katayama, S. Igi, and Z. Kozuka, J. Jpn. Inst. Met. 38, 332 (1974).Google Scholar
  190. 189.
    I Katayama, N. Kemori, and Z. Kozuka, Trans. Jpn. Inst. Met. 16, 423 (1975).Google Scholar
  191. 190.
    Von H. Jacobi, D. Stockel, and H. Leo Lukas, Z. Metallkd. 62, 305 (1971).Google Scholar
  192. 191.
    M Kanno, J. Nucl. Mater. 51, 24 (1974).Google Scholar
  193. 191a.
    H. Holleck and A. Kleykamp, J. Nucl. Mater. 35, 158 (1970).Google Scholar
  194. 192.
    M. Murabayashi and H. Kleykamp, J. Less Common Met. 39, 235 (1975).Google Scholar
  195. 193.
    P. Jagannathan and A. Ghosh, Met. Trans. 4, 1577 (1973).Google Scholar
  196. 194.
    D Chatterjee and J. V. Smith, J. Electrochem. Soc. 120, 770 (1973).Google Scholar
  197. 195.
    H. Tanaka, Y. Kishida, and J. Moriyama, J. Jpn. Inst. Met. 37, 564 (1973).Google Scholar
  198. 196.
    R. Benz, Met. Trans. 5, 2217 (1974).Google Scholar
  199. 197.
    G. K. Sigworth and J. F. Elliott, Can. Met. Quart. 13, 455 (1974).Google Scholar
  200. 198.
    G. K. Sigworth and J. F. Elliott, Met. Sci. J. 8, 298 (1974).Google Scholar
  201. 199.
    D J. Fray and B. Savory, J. Chem. Thermodyn. 7, 485 (1975).Google Scholar
  202. 200.
    M. Kolodney, B. Minushkin, and H. Sternmetz, Electrochem. Technol. 3, 214 (1965).Google Scholar
  203. 201.
    H. S. Isaacs, J. Electrochem. Soc. 119, 455 (1972).Google Scholar
  204. 202.
    R. J. Fruehan, Met. Trans. 5, 345 (1974).Google Scholar
  205. 203.
    W. A. Fischer and D. Janke, Z. Metallkd. 62, 747 (1971).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • M. S. Chandrasekharaiah
    • 1
  • O. M. Sreedharan
    • 1
    • 2
  • G. Chattopadhyay
    • 1
  1. 1.Chemistry DivisionBhabha Atomic Research CentreTrombay, BombayIndia
  2. 2.Reactor Research CentreKalpakkamIndia

Personalised recommendations