Advertisement

Limiting Factors in Measurements Using Solid Electrolytes

  • T. A. Ramanarayanan
Chapter

Abstract

Measurements using solid electrolytes are of two kinds: thermodynamic measurements and kinetic measurements. The use of solid electrolytes for thermodynamic measurements received much of its impetus from the work of Kiukkola and Wagner1, 2 and Peters et al. 3, 4 They introduced the use of ZrO2-base and ThO2-base solid electrolytes for the determination of the standard free energy of formation of oxides. As early as 1943, Wagner had explained transport mechanisms in doped zirconia.5 Since the work of Kiukkola and Wagner,2 solid oxide and halide electrolytes have been extensively used in several thermodynamic investigations. Kinetic measurements using solid electrolytes fall into two categories. The first category includes the measurement of transport phenomena in solid electrolytes. The polarization technique devised by Hebb6 and Wagner7 may be used for this purpose. The second category includes the use of a solid electrolyte to study transport phenomena in an electrode or the kinetics of a phase boundary reaction. Detailed discussions on thermodynamic measurements and kinetic measurements are presented in Chapters 3, 4, and 5. Several excellent review articles have also appeared on the subject.8–15

Keywords

Oxygen Pressure Solid Electrolyte Kinetic Measurement Calcium Fluoride Thermodynamic Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Kiukkola and C. Wagner, J. Electrochem. Soc. 104, 308 (1957).CrossRefGoogle Scholar
  2. 2.
    K. Kiukkola and C. Wagner, J. Electrochem. Soc. 104, 379 (1957).CrossRefGoogle Scholar
  3. 3.
    H. Peters and H. Möbius, Z. Phys. Chem. 209, 298 (1958).Google Scholar
  4. 4.
    H. Peters and G. Mann, Z. Electrochem. 63, 244 (1959).Google Scholar
  5. 5.
    C. Wagner, Naturwissenschaften 31, 265 (1943).CrossRefGoogle Scholar
  6. 6.
    M. H. Hebb, J. Chem. Phys. 20, 185 (1952).CrossRefGoogle Scholar
  7. 7.
    C. Wagner, in International Committee of Electrochemical Thermodynamics and Kinetics, Proceedings of the Seventh Meeting, Lindau, 1955, Butterworths, London (1957), p. 361.Google Scholar
  8. 8.
    H. Schmalzried, Thermodynamics, Vol. 1, IAEA, Vienna, (1966), p. 97.Google Scholar
  9. 9.
    B. C. H. Steele, in Electromotiveforce Measurements in High Temperature Systems, ed. C. B. Alcock, The Institution of Mining and Metallurgy, London (1968), p. 3.Google Scholar
  10. 10.
    R. A. Rapp and D. A. Shores, in Physicochemical Measurements in Metals Research, ed. R. A. Rapp, Wiley-Interscience, New York (1970), p. 123.Google Scholar
  11. 11.
    H. Schmalzried, Proceedings of the International Symposium on Metallurgical Chemistry, Brunei University, England, 1971, p. 39.Google Scholar
  12. 12.
    T. H. Etsell and S. N. Flengas, Chem. Rev. 70, 339 (1970).CrossRefGoogle Scholar
  13. 13.
    H. Schmalzried and A. D. Pelton, Ann. Rev. Mater. Sci. 2, 143 (1972).CrossRefGoogle Scholar
  14. 14.
    W. L. Worrell, Am. Ceram. Soc. Bull. 53, 425 (1974).Google Scholar
  15. 15.
    H. Rickert, in Electromotive Force Measurements in High Temperature Systems, ed. C. B. Alcock, The Institution of Mining and Metallurgy, London (1968), p. 59.Google Scholar
  16. 16.
    C. Wagner, Z. Phys. Chem. B21, 25 (1933).Google Scholar
  17. 17.
    C. Wagner, in Advances of Electrochemistry and Electrochemical Engineering, Vol. IV, ed. P. Delahay, Interscience, New York (1966), p. 2.Google Scholar
  18. 18.
    T. A. Ramanarayanan and W. L. Worrell, Proceedings of the Symposium on Physico-Chemical Techniques at High Temperatures, Vol. 7, IUPAC, Baden Near Vienna (1973), p. 240; Can. Met. Quart. 13, 325 (1974).Google Scholar
  19. 19.
    F. A. Kröger and H. J. Vink, Solid State Phys. 3, 307 (1956).CrossRefGoogle Scholar
  20. 20.
    F. A. Kröger, The Chemistry of Imperfect Crystals, North-Holland, Amsterdam (1964).Google Scholar
  21. 21.
    J. W. Patterson, E. C. Bogren, and R. A. Rapp, J. Electrochem. Soc. 114, 752 (1967).CrossRefGoogle Scholar
  22. 22.
    M. F. Lasker and R. A. Rapp, Z. Phys. Chem. N.F. 49, 198 (1966).CrossRefGoogle Scholar
  23. 23.
    R. Baker and J. M. West, J. Iron Steel Inst. 204, 212 (1966).Google Scholar
  24. 24.
    H. Schmalzried, Z. Electrochem 66, 572 (1962).Google Scholar
  25. 25.
    C. Wagner, J. Electrochem. Soc. 115, 933 (1968).CrossRefGoogle Scholar
  26. 26.
    E. Mollwo, Nachr. Gesellsch. Wissensch. Gottingen Math. Phys. AI. N.F. 6, 79 (1934).Google Scholar
  27. 27.
    J. W. Hinze and J. W. Patterson, J. Electrochem. Soc. 120, 96 (1973).CrossRefGoogle Scholar
  28. 28.
    J. W. Patterson, J. Electrochem. Soc. 118, 1033 (1971).CrossRefGoogle Scholar
  29. 29.
    J. D. Tretyakov and H. Schmalzried, Ber. Bunsenges. Phys. Chem. 69, 396 (1965).Google Scholar
  30. 30.
    L. A. Pugliese and G. R. Fitterer, Met. Trans. 2, 1997 (1970).CrossRefGoogle Scholar
  31. 31.
    F. N. Mazandarany and R. D. Pehlke, J. Electrochem. Soc. 121, 711 (1974).CrossRefGoogle Scholar
  32. 32.
    K. E. Oberg, L. M. Friedman, W. M. Boorstein, and R. A. Rapp, Met. Trans. 4, 61 (1973).CrossRefGoogle Scholar
  33. 33.
    K. E. Oberg, L. M. Friedman, R. Szwarc, W. M. Boorstein, and R. A. Rapp, J. Iron Steel Inst. 210, 359(1972).Google Scholar
  34. 34.
    R. Szwarc, K. E. Oberg, and R. A. Rapp, High Temp. Sc. 4, 347 (1972).Google Scholar
  35. 35.
    T. A. Ramanarayanan and R. A. Rapp, Met. Trans. 3, 3239 (1972).CrossRefGoogle Scholar
  36. 36.
    H. Schmalzried, Z. Phys. Chem. (Frankfurt a. Mm) 38, 87 (1963).CrossRefGoogle Scholar
  37. 37.
    W. L. Worrell and J. L. Iskoe, in Fast Ion Transport in Solids, ed. W. van Gool, IUPAC, North-Holland, Amsterdam (1973), p. 513.Google Scholar
  38. 38.
    C. Wagner and A. Werner, J. Electrochem. Soc. 110, 326 (1963).CrossRefGoogle Scholar
  39. 39.
    W. L. Worrell, Thermodynamics, Vol. 1, IAEA, Vienna (1966), p. 131.Google Scholar
  40. 40.
    S. C. Singhal and W. L. Worrell, in Metallurgical Chemistry, ed. O. Kubaschewski, Her Majesty’s Stationery Office, London (1972), p. 65.Google Scholar
  41. 41.
    S. C. Singhal and W. L. Worrell, Met. Trans. 4, 895 (1973).CrossRefGoogle Scholar
  42. 42.
    P. J. Meschter and W. L. Worrell, in Proceedings of the Third International Conference on Chemical Thermodynamics, IUPAC, Baden Near Vienna, Austria (1973).Google Scholar
  43. 43.
    P. J. Meschter, Ph.D. dissertation, University of Pennsylvania (1974).Google Scholar
  44. 44.
    W. H. Skelton, N. J. Magrani, and J. F. Smith, Met. Trans. 2, 473 (1971).CrossRefGoogle Scholar
  45. 45.
    H. Rickert and R. Steiner, Z. Phys. Chem. 49, 127 (1966).CrossRefGoogle Scholar
  46. 46.
    T. N. Belford and C. B. Alcock, Trans. Faraday Soc. 60, 822 (1964).CrossRefGoogle Scholar
  47. 47.
    T. N. Belford and C. B. Alcock, Trans. Faraday Soc. 61, 443 (1965).CrossRefGoogle Scholar
  48. 48.
    H. H. Möbius, Silikattechnik 17, 358, 385 (1966).Google Scholar
  49. 49.
    T. Y. Tien, J. Appi. Phys. 35, 122 (1964).CrossRefGoogle Scholar
  50. 50.
    N. L. Lofgren and E. J. McIver, quoted by T. L. Markin, in Electromotive Force Measurements in High Temperature Systems, ed. C. B. Alcock, The Institution of Mining and Metallurgy, London (1968), p. 91.Google Scholar
  51. 51.
    C. Wagner, in Physico Chemical Measurements in Metals Research, Part 1, ed. R. A. Rapp, Interscience, New York (1970), p. 1.Google Scholar
  52. 52.
    K. S. Goto and W. Pluschkell, in Physics of Electrolytes, Vol. 2, ed. J. Hladik, Academic Press, New York (1972), p. 539.Google Scholar
  53. 53.
    J. G. Burt, J. Electrochem. Soc. 117, 267 (1970).CrossRefGoogle Scholar
  54. 54.
    J. Delcet, R. J. Heus, and J. J. Egan, J. Electrochem. Soc. 125, 755 (1978).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • T. A. Ramanarayanan
    • 1
    • 2
  1. 1.Department of Metallurgical EngineeringIndian Institute of TechnologyKanpurIndia
  2. 2.Corporate Research LaboratoriesExxon Research and Engineering CompanyLindenUSA

Personalised recommendations