Skip to main content

Mathematical Analysis of Mutation-Induction Kinetics

  • Chapter
Chemical Mutagens

Abstract

Mathematical analysis of dose-response relationships is necessary in the formulation of quantitative hypotheses regarding the macromolecular processes involved in the induction of genetic changes in cells. Such analysis is also important for the assessment of risks to human health that may be associated with exposure to mutagens or other genetically active agents.p(48) It is useful to distinguish formal descriptions of dose-response relationships from mathematical models of the underlying molecular mechanisms. In this chapter, we are concerned primarily with the formal description of mutation yields and frequencies in unicellular systems, but we also indicate how this formalism can be linked to current ideas on repair-mediated mutagenesis.p(54) Formal expressions for induced mutagenesis can be derived on the basis of either stochastic or deterministic assumptions. Stochastic models used in similar problems generally involve the application of the probit-log dose distribution 14,111 or the Poisson distribution.p(21,24,26,46) Deterministic models, so far applied only to cell-survival kinetics, are based on differential equations analogous to the law of mass action (e.g., Calkinsp(5)); other expressions, such as the allometric equation for differential growth, p(37) might be useful empirically in the analysis of frequency curves that appear to increase at nonintegral powers of dose. Here we adopt a stochastic approach and use the Poisson distribution in the analysis of UV-induced forward and reverse mutations in haploid strains of the yeast Saccharomyces cerevisiae. However, the formalism is sufficiently general to be applied to other mutagens, to other unicellular systems, and to other genetic end points such as mitotic recombination or malignant transformation.

A condensed version of this chapter is to be found in R. H. Haynes and F. Eckardt, Analysis of dose-response patterns in mutation research, Can. J. Genet. Cytol. 21, 277-302 (1979).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Auerbach, Mutation Research, Chapman and Hall, London (1976).

    Google Scholar 

  2. S. E. Bresler, Theory of misrepair mutagenesis, Mutat. Res. 29, 467–472 (1975).

    Google Scholar 

  3. B. A. Bridges, in: Radiation Research (O. F. Nygaard, H. I. Adler and W. K. Sinclair, eds.), pp. 626–631, Academic Press, New York (1975).

    Google Scholar 

  4. W. R. Bryan and M B. Shimkin, Quantitative analysis of dose-response data obtained with three carcinogenic hydrocarbons in strain C3H male mice, /. Natl. Cancer Inst. 3, 503–531 (1943).

    CAS  Google Scholar 

  5. J. Calkins, A method of analysis of radiation response based on enzyme kinetics, Radiat. Res. 45, 50–62 (1971).

    Article  CAS  Google Scholar 

  6. P. A. Cerutti, in: Molecular Mechanisms for Repair of DNA (P. C. Hanawalt and R. B. Setlow, eds.), Part App. 3–12, Plenum Press, New York (1975).

    Google Scholar 

  7. J. Cornfield, Carcinogenic risk assessment, Science 198, 693–699 (1977).

    Article  CAS  Google Scholar 

  8. M. Demerec and R. Latarjet, Mutations in bacteria induced by radiations, Cold Spring Harbor Symp. Quant. Biol. 77, 38–50 (1946).

    Google Scholar 

  9. F. J. deSerres, H. V. Mailing, and B. B. Webber, Dose-rate effects on inactivation and mutation induction in Neurospora crassa, Brookhaven Symp. Biol. 20, 56–76 (1967).

    Google Scholar 

  10. J. W. Drake, The biochemistry of mutagenesis, Annu. Rev. Biochem. 45, 11–37 (1976).

    Article  CAS  Google Scholar 

  11. F. Eckardt and R. H. Haynes, Kinetics of mutation induction by ultraviolet light in excision-deficient yeast, Genetics 85, 225–247 (1977).

    CAS  Google Scholar 

  12. F. Eckardt and R. H. Haynes, Induction of pure and sectored mutant clones in excision proficient and deficient strains of yeast, Mutat. Res. 43, 327–338 (1977).

    Article  CAS  Google Scholar 

  13. F. Eckardt, E. Moustacchi, and R. H. Haynes, in: DNA Repair Mechanisms ( P. C. Hanawalt, E. C. Friedberg, and C. F. Fox, eds), pp. 421–423, Academic Press, New York (1978).

    Google Scholar 

  14. T. Eklund, Dynamics of X-ray induced reversion in heterogeneous S. cerevisiae populations, Mutat. Res. 44, 217–227 (1977).

    Article  CAS  Google Scholar 

  15. J. Engelberg, Analysis of a radiation-induced mutation in E. coli, J. Theor. Biol. 2, 312–325 (1962).

    Google Scholar 

  16. D.J. Finney, Probit Analysis, Cambridge University Press, Cambridge (1947).

    Google Scholar 

  17. M. H. L. Green and W. J. Muriel, Mutagen testing using TRP+ reversion in Escherichia coli, Mutat. Res. 38, 3–32 (1976).

    CAS  Google Scholar 

  18. P. C. Hanawalt and R. B. Setlow, Molecular Mechanisms for Repair of DNA, Plenum Press, New York (1975).

    Google Scholar 

  19. W. Harm and W. Stein, Zur Deutung von Maxima und Sättigungs-Effekten bei Dosis-Effect-Kurven für strahleninduzierte Mutation, Z. Naturforsch. 11b, (H2), 85–105 (1956).

    Google Scholar 

  20. R. H. Haynes, Role of DNA repair mechanisms in microbial inactivation and recovery phenomena Photochem. Photobiol. 3, 429–450 (1964).

    Article  CAS  Google Scholar 

  21. R. H. Haynes, The interpretation of microbial inactivation and recovery phenomena, Radiat. Res. Suppl. 6, 1–29 (1966).

    Article  Google Scholar 

  22. R. H. Haynes, in: Cell Survival after Low Doses of Radiation (T. Alper, ed.), pp. 197–208, J. Wiley & Sons, London (1975).

    Google Scholar 

  23. R. H. Haynes, S. Wolff, and J. Till, Structural defects in DNA and their repair in microorganisms, Radiat. Res. Suppl. 6 (1966).

    Google Scholar 

  24. O. Hug and A. M. Kellerer, Stochastik der Strahlenwirkung, Springer-Verlag, Berlin (1966).

    Google Scholar 

  25. R. W. Kaplan, Effectiveness of photorepair, influence of dark repair on the shape of dose-response curves, and high-dose decline, in UV-induced colour mutations of Serratia, Mutat. Res. 49, 357–370 (1978).

    Google Scholar 

  26. Yu. G. KapuPtcevich, Quantitative Regularities of Cell Radiation Injury (in Russian), Atomizdat, Moscow (1978).

    Google Scholar 

  27. S. Kondo, Evidence that mutations are induced by errors in repair and replication, Genetics (Suppl.) 73, sl09–sl22 (1973).

    Google Scholar 

  28. H. P. Leenhouts and K. H. Chadwick, The crucial role of DNA double-strand breaks in cellular radiobiological effects. Adv. Radiat. Biol. 7, 55–101 (1978).

    CAS  Google Scholar 

  29. N. Loprieno, R. Barale, S. Baroncelli, A. Cammellini, M. Melani, R. Nieri, M. Nozzolini, and A. M. Rossi, Mutations induced by X-radiation in the yeast Schizosaccharomyces pombe, Mutat. Res. 28, 163–173 (1975).

    Article  CAS  Google Scholar 

  30. N. Mantel, in: Origins of Human Cancer (H. H. Hiatt, J. D. Watson, and J. A. Winsten, eds.), pp. 1397–1401, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  31. N. Mantel, N. R. Bohidar, C. C. Brown, J. L. Ciminera, and J. W. Tukey, An improved Mantel-Bryan procedure for 'safety' testing of carcinogens, Cancer Res. 35, 865–874 (1975).

    CAS  Google Scholar 

  32. J. McCann and B. N. Ames, in: Origins of Human Cancer ( H. H. Hiatt, J. D. Watson, and J. A. Winsten, eds.), pp. 1431–1450, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1977).

    Google Scholar 

  33. J. McCann, E. Choi, E. Yamasaki, and B. N. Ames, Detection of carcinogens as mutagens in the Salmonella/microsome test: Assay of 300 chemicals, Proc. Natl. Acad. Sci. U.S.A. 72, 5135–5139 (1975).

    Article  CAS  Google Scholar 

  34. T. H. Maugh, Chemical carcinogens: How dangerous are low doses? Science 202, 37–41 (1978).

    Article  Google Scholar 

  35. M. Meselson and K. Russell, in: Origins of Human Cancer ( H. H. Hiatt, J. D. Watson, and J. A. Winsten, eds.), pp. 1473–1481, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1977).

    Google Scholar 

  36. R. J. Munson and D. T. Goodhead, The relation between induced mutation frequency and cell survival—a theoretical approach and an examination of experimental data for eukaryotes, Mutat. Res. 42, 145–160 (1977).

    Article  CAS  Google Scholar 

  37. J. Needham, Chemical heterogony and the ground plan of animal growth, Biol. Rev. Cambridge Philos. Soc. 9, 79–109 (1934).

    Article  CAS  Google Scholar 

  38. R. A. Nilan, C. F Konzak, J. Wagner, and R. R. Legault, Effectiveness and efficiency of radiations for inducing genetic and cytogenetic changes, Radiat. Bot. Suppl. 5, 71–89 (1965).

    Google Scholar 

  39. A. Norman, A nuclear role in the ultraviolet inactivation of Neurospora conidia, J. Cell. Comp. Physiol. 44, 1–10 (1954).

    Article  CAS  Google Scholar 

  40. P. Oftedal, A theoretical study of mutant yield and cell killing after treatment of heterogeneous cell populations, Hereditas 60, 177–210 (1968).

    Article  CAS  Google Scholar 

  41. E. C. Pollard, S. Person, M. Rader, and D. J. Fluke, Relation of ultraviolet light mutagenesis to a radiation-damage inducible system in Escherichia coli, Radiat. Res. 72, 519–532 (1977).

    CAS  Google Scholar 

  42. M. Radman, in: Molecular and Environmental Aspects of Mutagenesis ( M. Miller, ed.), pp. 128–142, C. C Thomas, Springfield, Illinois (1974).

    Google Scholar 

  43. R. B. Setlow and J. K. Setlow, Effects of radiation on polynucleotides, Annu. Rev. Biophys. Bioeng. 1, 293–346 (1972).

    Article  Google Scholar 

  44. K. C. Smith, Ultraviolet radiation-induced mutability of uvrD strains of Escherichia coli B/r and K-12: A problem in analyzing mutagenesis data, Photochem. Photobiol. 24, 433–437 (1976).

    Article  CAS  Google Scholar 

  45. W. P. Spencer and C. Stern, Experiments to test the validity of the linear r-dose/mutation frequency relation in Drosophila at very low doses, Genetics 33, 43–74 (1948).

    Google Scholar 

  46. N. W. Timofeef-Ressovsky and K. G. Zimmer, Das Trefferprinzip in der Biologie, S. Hirzel Verlag, Leipzig (1947).

    Google Scholar 

  47. R. M. Tyrell, Radiation synergism and antagonism, Photochem. Photobiol. Rev. 3, 35–113 (1978).

    Google Scholar 

  48. UNSCEAR Report, Sources and Effects of Ionizing Radiations, United Nations, New York (1976).

    Google Scholar 

  49. R. C. von Borstel, in: The Biological Basis of Radiation Therapy (E. E. Schwartz, ed.), pp. 60–125, G. B. Lippincott, Philadelphia (1966).

    Google Scholar 

  50. R. C. von Borstel, in: Biological and Environmental Effects of Low-Level Radiation, Vol. 1, pp. 361–368, International Energy Agency, Vienna (1976).

    Google Scholar 

  51. R. B. Webb, Lethal and mutagenic effects of near-ultraviolet radiation, Photochem. Photobiol. Rev. 2, 169–261 (1977).

    CAS  Google Scholar 

  52. B. B. Webber and F. J. deSerres, Induction kinetics and genetic analysis of X-ray induced mutations in the ad3 region of Neurospora crassa, Proc. Natl. Acad. Sei. U.S.A. 53, 430–437 (1965).

    Article  CAS  Google Scholar 

  53. R. Wheatcroft, B. S. Cox, and R. H. Haynes, Repair of UV-induced DNA damage and survival in yeast. I. Dimer excision, Mutat. Res. 30, 209–218 (1975).

    CAS  Google Scholar 

  54. E. M. Witkin, Ultraviolet-induced mutation and DNA repair, Annu. Rev. Genetics 3, 525– 552 (1969).

    Google Scholar 

  55. E. M. Witkin, Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli, Bacteriol. Rev. 40, 869–907 (1976).

    CAS  Google Scholar 

  56. S. Wolff, The kinetics for two-break chromosome exchanges, J. Theoret. Biol. 3, 304–314 (1962).

    Article  Google Scholar 

  57. K. G. Zimmer, Ein Beitrag zur Frage nach der Beziehung zwischen Röntgenstrahlendosis und dadurch ausgelöster Mutationsrate, Strahlentherapie 51, 179–185 (1934).

    Google Scholar 

  58. K. G. Zimmer, Some unusual topics in radiation biology, Radiat. Res. 28, 830–843 (1966).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Haynes, R.H., Eckardt, F. (1980). Mathematical Analysis of Mutation-Induction Kinetics. In: de Serres, F.J., Hollaender, A. (eds) Chemical Mutagens. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3072-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3072-1_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3074-5

  • Online ISBN: 978-1-4613-3072-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics