Skip to main content

Evolutionary Implications of Polyploidy in Amphibians and Reptiles

  • Chapter
Book cover Polyploidy

Part of the book series: Basic Life Sciences ((BLSC,volume 13))

Abstract

In plants, Polyploidy is recognized to be a wide-spread phenomenon and of considerable practical and evolutionary importance, whereas polyploid animal species have been relegated for the most part, to insignificance in terms of their existence or evolutionary importance. Evolutionary and genetic authorities have adhered mostly to Müllers’s 1925 (1) contention that sexual imbalance in polyploids would not permit bisexual polyploids to exist as natural entities in animals as they do in plants, which are capable of vegetative reproduction. Asexual polyploids are also condemned, in animals, by the commonly held, and mathematically “proven” (2) viewpoint that this method of reproduction reduces genetic recombination and is tantamount to phylogenetic suicide (3–5). It is evident, however, that an increasing number of polyploid amphibians and reptiles are being encountered in natural populations living in North America, South America, Europe, Asia, and Africa. To ignore their existence or to pass judgement on their evolutionary significance without adequate study is incomprehensible. In spite of the theoretical dogma surrounding animal polyploids, there is a growing bank of data which suggests that naturally occurring animal polyploids may play an interesting and significant role in population genetics and speciation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Muller, H.J., 1925, Why Polyploidy is rarer in animals than in plants. Amer. Nat. 59: 346–353.

    Google Scholar 

  2. Kimura, M., Ohta, T., 1971, “Theoretical Aspects of Population Genetics,” Princeton University Press, New Jersey. 219 pp.

    Google Scholar 

  3. Maynard Smith, J., 1971, What use is sex? J. Theor. Biol. 30: 319–335.

    Google Scholar 

  4. Maynard Smith, J., 1978, “The Evolution of Sex,” Cambridge University Press, Cambridge, London. 222 pp.

    Google Scholar 

  5. Williams, G.C., 1975, “Sex and Evolution,” Monographs in Population Biology. 8. Princeton University Press, New Jersey. 200 pp.

    Google Scholar 

  6. Fischberg, M., Kobel, H.R., 1978, Two new polyploid Xenopus species from western Uganda. Experientia 34: 1012–1014.

    PubMed  CAS  Google Scholar 

  7. Tymowska, J., Fischberg, M., 1973, Chromosome complements of the genus Xenopus. Chromosoma 44: 335–342.

    PubMed  CAS  Google Scholar 

  8. Becak, M.L., Becak, W., Rabello, M.N., 1967, Further studies on polyploid amphibians (Ceratophrydidae). I. Mitotic and meiotic aspects. Chromosoma 22: 192–201.

    PubMed  CAS  Google Scholar 

  9. Bogart, J.P., 1967, Chromosomes of the South American amphibian family Ceratophridae with a reconsideration of the taxonomic status of Odontophrynus americanus. Canad. J. Genet. Cytol. 9: 531–542.

    CAS  Google Scholar 

  10. Becak, M.L., Becak, W., Rabello, M.N., 1966, Cytological evidence of constant tetraploidy in the bisexual South American frog Odontophrynus americanus. Chromosoma 19: 188–193.

    PubMed  CAS  Google Scholar 

  11. Barrio, A., Rinaldi de Chiere, P., 1970, Estudios citogeneticos sobre el genero Pleurodema y sus consecuencias evolutivas (Amphibia, Anura, Leptodactylidae). Physis 30: 309–319.

    Google Scholar 

  12. Wasserman, A.O., 1970, Polyploidy In the common tree toad, Hyla versicolor Le Conte. Science 167: 385–386.

    PubMed  CAS  Google Scholar 

  13. Batistic, R.F., Soma, M., Becak, M.L, Becak, W., 1975, Further studies on polyploid Amphibians. A diploid population of Phyllomedusa burmeisteri. J. Heredity 66: 160–162.

    Google Scholar 

  14. Pisanetz, Ye.M., 1978, New polyploid species of Bufo danatensis Pisanetz, sp. nov., from the Turkmen SSR. SOPOV AKAD NAUK UKR RSP SER. B HEGL BIOL NAUKY (3): 277–282 (in Ukranian).

    Google Scholar 

  15. Mazik, E. Yu, Kadyrova, B.K., Toktosunov, A.T., 1976, Peculiarities of the karyotype of the green toad (Bufo viridis) of Kirghizia. Zool. ZH. 55: 1740–1742 (in Russian).

    Google Scholar 

  16. Bogart, J.P., Tandy, M., 1976, Polyploid amphibians: three more diploid-tetraploid cryptic species of frogs. Science 193: 334–335.

    PubMed  CAS  Google Scholar 

  17. Berger, L., 1977, Systematics and hybridization in the Rana esculenta complex, pp. 367–388 Taylor, D.H., Guttman, S.I. (eds.), “The Reproductive Biology of Amphibians,” Plenum, New York and London.

    Google Scholar 

  18. Günther, R., 1975, Zum natürlichen Vorkommen und zur Morpho-logie triploider Teichfrösche, Rana 003C 003C esculenta 003E 003E L. in der DDR (Anura, Ranidae). Mitt. Zool. Mus. Berl. 51: 145–158.

    Google Scholar 

  19. Uzzell, T., 1963, Natural triploidy in salamanders related AmbyStoma jeffersonianum. Science 139: 113–115.

    PubMed  Google Scholar 

  20. Downs, F.L., 1978, Unisexual Ambystoma from the Bass Islands of Lake Erie. Occas. Pap. Mus. Zool. Univ. Mich. 685: 1–36.

    Google Scholar 

  21. Hall, W.P., 1970, Three probable cases of parthenogenesis in lizards (Agamidae, hameleontidae, Gekkonidae). Experientia 26: 1271–1273.

    PubMed  CAS  Google Scholar 

  22. Kluge, A.G., Eckardt, M.J., 1969, Hemidactylus garnoti Dumeril and Bibron, a triploid all-female species of gekkonid lizard. Copeia 1969: 651–664.

    Google Scholar 

  23. Pennock, L.A., 1965, Triploidy in parthenogenetic species of the teiid lizard, genus Cnemidophorus. Science 149: 539–540.

    PubMed  CAS  Google Scholar 

  24. Lowe, C.H., Wright, J., 1966, Chromosomes and karyotypes of cnemidophorine teiid lizards. Mamm. Chrom. Newsletter 22: 199–200.

    Google Scholar 

  25. Wright, J.W., Lowe, C.H., 1968, Weeds, polyploids, parthenogenesis, and the geographical and ecological distribution of all-female species of Cnemidophorus. Copeia 1968: 128–138.

    Google Scholar 

  26. Parmenter, C.L., 1933, Haploid, diploid, triploid, and tetraploid chromosome numbers and their origin in parthenogenetically developed larvae and frogs of Rana pipiens and Rana palustris. J. Exp. Zool. 66: 409–453.

    Google Scholar 

  27. Fankhauser, G., 1945, The effects of changes in chromosome numbers on amphibian development. Quart. Rev. Biol. 20: 20–78.

    Google Scholar 

  28. Moore, J.A., 1955, Abnormal combinations of nuclear and cytoplasmic systems in frogs and toads. Adv. Genet. 7: 139–182.

    PubMed  CAS  Google Scholar 

  29. Dasgupta, S., 1962, Induction of triploidy by hydrostatic pressure. J. Exp. Zool. 151: 105–116.

    PubMed  CAS  Google Scholar 

  30. Ferrier, V., Jaylet, A., 1978, Induction of triploidy in the newt Pleurodeles waltlii by heat shock or hydrostatic pressure. Interpretation of the different types of ploidy using a chromosomal marker. Chromosoma 69: 47–63.

    PubMed  CAS  Google Scholar 

  31. Rugh, R., Marshland, D.A., 1943, The effect of hydrostatic pressure upon the early development of the frog’s egg (Rana pipiens). I. Macroscopic observations. Proc. Amer. Phil. Soc. 86: 459–466.

    Google Scholar 

  32. Volpe, E.P., Dasgupta, S., 1962, Gynogenetic diploids of mutant leopard frogs. J. Exp. Zool. 151: 287–302.

    PubMed  CAS  Google Scholar 

  33. Nace, G.W., Richards, C.M., Asher, J.H., Jr., 1970, Parthenogenesis and genetic variability. I. Linkage and inbreeding estimations in the frog. Rana pipiens. Genetics 66: 349–368.

    PubMed  CAS  Google Scholar 

  34. Volpe, E.P., 1970, Chromosome mapping in the leopard frog. Genetics 64: 11–21.

    PubMed  CAS  Google Scholar 

  35. Bogart, J.P., 1969, Chromosomal evidence for evolution in the genus Bufo. Ph.D. dissertation, Univ. of Texas at Austin. 217 pp.

    Google Scholar 

  36. Bogart, J.P., 1972, Karyotypes, pp. 171-195, Blair, W.F. (ed.), “Evolution in the Genus Bufo,” University of Texas Press, Austin.

    Google Scholar 

  37. Richards, C.M., Nace, G.W., 1977, The occurrence of diploid ova in Rana pipiens. J. Heredity 68: 307–312.

    CAS  Google Scholar 

  38. Wasserman, A.C., 1970, Chromosomal studies of the Pelobatidae (Salientia) and some instances of ploidy. Southwest. Nat. 15: 239–248.

    Google Scholar 

  39. Hertwig, G., Hertwig, P., 1920, Triploide Froschlarven. Arch. Mikr. Anat. 94: 34–54.

    Google Scholar 

  40. Jaslow, A.P., Vogt, C., 1977, Identification and distribution Hyla versicolor and Hyla chrysoscelis in Wisconsin. Herpetologica 33: 201–205.

    Google Scholar 

  41. Kawamura, T., 1939, Artificial parthenogenesis in the frog. II. The sex of parthenogenetic frogs. J. Sei. Hiroshima Univ. Ser. B., Div. 1. 7: 39–86.

    Google Scholar 

  42. Kawamura, T., 1941, The sex of triploid frogs in Rana nigromaculata. Zool. Mag. (Tokyo) 53: 334–347.

    Google Scholar 

  43. Kawamura, T., 1952, Triploid hybrids of Rana japónica Günther female x Rana tempororia ornativentris Werner male. J. Sei. Hiroshima Univ. Ser. B., Div. 1, 12: 39–46.

    Google Scholar 

  44. Kawamura, T., Nishioka, M., 1977, Reproductive biology of Japanese anurans, pp. 103–139, Taylor, D.H., Guttman, S.I. (eds.), “The Reproductive Biology of Amphibians,” Plenum, New York and London.

    Google Scholar 

  45. Tompkins, R., 1978, Triploid and gynogenetic diploid Xenopus laevis. J. Exp. Zool. 203: 251–256.

    Google Scholar 

  46. Wright, D.A., Huang, C.P., Chuoke, B.D., 1976, Meiotic origin of triploidy in the frog detected by genetic analysis of enzyme polymorphisms. Genetics 84: 319–332.

    PubMed  CAS  Google Scholar 

  47. Brandon, R.A., 1977, INterspecific hybridization among Mexican and United States salamanders of the genus Ambystoma under laboratory conditions. Herpetologica 33: 133–152.

    Google Scholar 

  48. Humphrey, R.R., 1962, Mexican axolotls, dark and mutant white strains: care of experimental animals. Bull. Philadelphia Herpetol. Soc. 19: 21–25.

    Google Scholar 

  49. Nelson, C.R., Humphrey, R.R., 1972, Artificial interspecific hybridization among Ambystoma. Herpetologica 28: 27–32.

    Google Scholar 

  50. Clanton, W., 1934, An unusual situation in the salamander Ambystoma jeffersonianum (Green). Occas. Pap. Mus. Zool. Univ. Mich. No. 290: 1–14.

    Google Scholar 

  51. Bishop, S.C., 1941, The salamanders of New York. Bull. N.Y. St. Mus. No. 324: 1–365.

    Google Scholar 

  52. Minton, S.A., Jr., 1954, Salamanders of the Ambystoma jeffersonianum complex in Indiana. Herpetologica 10: 173–179.

    Google Scholar 

  53. Uzzell, T., 1964, Relations of the diploid and triploid species of the Ambystoma j effersonianum complex (Amphibia, Caudata). Copeia 1964: 257–300.

    Google Scholar 

  54. Uzzell, T.M.,Jr., Goldblatt, S.M., 1967, Serum proteins of salamanders of the Ambystoma j ef fersonianum complex, and the origin of the triploid species of this group. Evolution 21: 345–354.

    Google Scholar 

  55. Cuellar, O., 1976, Cytology of meiosis in the triploid gynogenetic salamander Ambystoma tremblayi. Chromosoma 58: 355–364.

    PubMed  CAS  Google Scholar 

  56. MacGregor, H.C., Uzzell, T.M., Jr., 1964, Gynogenesis in salamanders related to Ambystoma jeffersonianum. Science 143: 1043–1045.

    PubMed  CAS  Google Scholar 

  57. Tihen, J.A., 1958, Comments on the osteology and phylogeny of ambystomatid salamanders. Bull. Florida State Mus. 3: 1–50.

    Google Scholar 

  58. Freytag, G.E., 1959, Zur Anatomie und Systematischen Stellung von Ambystoma schmidti Taylor 1938 und verwandten Arten. Vierteljahrsschr. Naturforsch. Ges. Zurich 104: 79–89.

    Google Scholar 

  59. Dubois, A., 1978, Les problèmes de l’espèce chez les amphi- biens anoures, pp. 161-284, in Bocquet, C., Génermont, Lamotte, M. (eds.), “Les Problèmes de l’Espèce dans le Règne Animal II,” Société Zoologique de France.

    Google Scholar 

  60. Berger, L., 1968, Morphology of the F1 generation of various crosses within Rana esculenta - complex. Acta Zool. Cracoviensia 13: 301–324.

    Google Scholar 

  61. Blankenborn, H.J., Heusser, H., Vogel, P., 1971, Drei Phäno-typen von Grünfröschen aus dem Rana esculenta - Komplex in der Schweiz. Rev. Suisse Zool. 78: 1242–1247.

    Google Scholar 

  62. Günther, R., 1973, Uber die verwandtschaftlichen Beziehunger zwischen den europäischen Grünfröschen und den Bastardcharakter von Rana esculenta L. Zool. Anz. 190: 250–285.

    Google Scholar 

  63. GUnther, R., 1974, Neur Datenzur Verbreitung und Ökologie der GrUnfrosche (Anura, Ranidae) in der DDR. Mitt. Zool. Mus. Beri. 50: 287–298.

    Google Scholar 

  64. Tunner, H.G., 1974, Die klonale Struktur einer Wasserfrosch-population. J. Zool. Syst. Evol.-Forsch. 12: 309–314.

    Google Scholar 

  65. Tunner, H.G., Dobrowsky, M.T., 1976, Zur morphologischen, serologischen und enzymologischen Differenzierung von Rana lessonae und der hybridogenetischen Rana esculenta aus dem Seewinkel und dem Neusiedlersee (Österreich, Burgenland). Zool. Anz. 197: 6–22.

    CAS  Google Scholar 

  66. Knudsen, K., Scheel, J.J., 1975, Contribution to the systematics of European green frogs. Bull. Soc. Zool. Fr. 100: 677–679.

    Google Scholar 

  67. Ebendal, T., 1978, De gotfulla gröngrodorna. Faunaoch flora 1: 9–22.

    Google Scholar 

  68. Cimino, M.C., 1971, Egg-production, polyploidization and evolution in a diploid all-female fish of the genus Poeciliosis. Evolution 26: 294–306.

    Google Scholar 

  69. Schultz, R.J., 1969, Hybridization, unisexuality and Polyploidy in the teleost Poeciliopsis (Poeciliidae) and other vertebrates. Amer. Nat. 103: 605–619.

    Google Scholar 

  70. Uzzell, T., Günther, R., Berger, L., 1977, Rana ridibunda and Rana esculenta: a leaky hybridogenetic system (Amphibia Salientia). Proc. Acad. Nat. Sci. Philadelphia 128: 147–171.

    Google Scholar 

  71. Uzzell, T., Berger, L., 1975, Electrophoretic phenotypes of Rana ridibunda, Rana lessonae and their hybridogenetic associate. Rana esculenta. Proc. Acad, Nat. Sci. Philadelphia 127: 13–24.

    Google Scholar 

  72. GUnther, R., 1975, Untersuchungen der meiose bei Männchen ridibunda Pall., Rana lessonae Cam. und der Bastard- form Rana 003C 003Cesculenta 003E 003E L. (Anura). Biol. Zentrabbl. 94: 277–294.

    Google Scholar 

  73. Günther, R., 1970, Der karyotyp von Rana ridibunda Pall, und das Vorkommen von Triploidie bei Rana esculenta L. (Anura, Amphibia). Biol. Zentralbl. 89: 327–342.

    Google Scholar 

  74. Uzzell, T., Berger, L., Günther, R., 1975, Diploid and triploid progeny from a diploid female of Rana esculenta (Amphibia Salientia). Proc. Acad. Nat. Sci. Philadelphia 127: 81–91.

    Google Scholar 

  75. Cole, Ch.J., 1975, Evolution of parthenogenetic species of reptiles, pp. 340–355, in Reinboth, R. (ed.), “Intersexuality in the Animal Kingdom,” Springer-Verlag, Berlin, Heidelberg and New york.

    Google Scholar 

  76. Cole, C.J., 1979, Chromosome inheritance in parthenogenetic lizards and evolution of alloPolyploidy in reptiles. J. Heredity 70: 95–102.

    Google Scholar 

  77. Cuellar, O., 1974, On the origin of parthenogenesis in vertebrates; the cytogenetic factors. Amer. Nat. 108: 625–648.

    Google Scholar 

  78. Maslin, T.P., 1971, Conclusive evidence of parthenogenesis in three species of Cnemidophorus (Teiidae). Copeia 1971: 156–158.

    Google Scholar 

  79. Maslin, T.P., 1971, Parthenogenesis in reptiles. Amer. Zool. 11: 361–380.

    Google Scholar 

  80. Darevsky, I.S., 1966, Natural parthenogenesis in a polymorphic group of Caucasian rock lizards related to Lacerta saxicola Eversmann. J. Ohio Herpet. Soc. 5: 115–152.

    Google Scholar 

  81. Cuellar, O., 1968, Additional evidence for true parthenogenesis in lizards of the genus Cnemidophorus. Herpetologica 24: 146–150.

    Google Scholar 

  82. Cuellar, O., Kluge, A.G., 1972, Natural parthenogenesis in the gekkonid lizard Lepidodactylus lugubris. J. Genetics 61: 14–26 + 2 pi.

    Google Scholar 

  83. Cole, C.J., 1978, Parthenogenetic lizards. Science 201: 1154–1155.

    PubMed  CAS  Google Scholar 

  84. Wright, J.W., 1978, Parthenogenetic lizards. Science 201: 1152–1154.

    PubMed  CAS  Google Scholar 

  85. Cuellar, 0., 1977, Animal parthenogenesis. Science 197: 837–843.

    Google Scholar 

  86. Cuellar, 0., 1971, Reproduction and the mechanism of meiotic restitution in the parthenogenetic lizard Cnemidophorus uniparens. J. Morph. 133: 139–165.

    Google Scholar 

  87. Darevsky, I.S., Danielyan, F.D., 1968, Diploid and triploid progeny arising from natural mating of parthenogenetic Lacerta armeniaca and L. unisexualis with bisexual I. saxicola valentini. J. Herpetology 2: 65–69.

    Google Scholar 

  88. Darevsky, I.S., Kupriyanova, L.A., Bakradze, M.A., 1978, Occasional males and intersexes in parthenogenetic species of Caucasian rock lizards (genus Lacerta). Copeia 1978: 201–207.

    Google Scholar 

  89. Lowe, C.H., Wright, J.W., Cole, C.J., Bezy, R.L., 1970, Natural hybridization between the teiid lizards Cnemidophorus sonorae (parthenogenetic) and Cnemidophorus tigris (bisexual). Syst. Zool. 19: 114–127.

    Google Scholar 

  90. Parker, E.D., Jr., Selander, R.K., 1976, The organization of genetic diversity in the parthenogenetic lizard Cnemidophorus tesselatus. Genetics 84: 791–805.

    PubMed  Google Scholar 

  91. Wickbom, T., 1949, Further cytological studies on Anura and Urodela. Hereditas 35: 33–48.

    Google Scholar 

  92. Saez, F.A., Brum, N., 1959, Citogenetica de anfibios anuros de America del Sur. Los cromosomas de Odontophrynus americanus y Ceratophrys ornata. Anal. Fac. Med. Montevideo 44: 414–423.

    CAS  Google Scholar 

  93. Saez, F.A., Brum, N., 1960, Chromosomes of South American amphibians. Nature 185: 945.

    PubMed  CAS  Google Scholar 

  94. Saez, F.A., Brum-Zorilla, N., 1966, Karyotype variation in some species of the genus Odontophrynus (Amphibia-Anura). Caryologia 19: 55–63.

    Google Scholar 

  95. Barrio, A., Pistol de Rubel, D., 1972, Encuesta cariotipica de poblaciones argentino-uruguayas de Odontophrynus americanus (Anura, Leptodactylidae) relacionada con otros rasquos taxonomicos. Physis 31: 281–291.

    Google Scholar 

  96. Barrio, A., Rinaldi de Chieri, P., 1970, Relaciones cariosistematicas de los Ceratophryidae de la Argentina (Amphibia, Anura). Physis 30: 321–329.

    Google Scholar 

  97. Becak, M.L., Becak, W., Vizotto, L.D., 1970, A diploid population of the polyploid Amphibian Odontophrynus americanus and an artificial intraspecific triploid hybrid. Experientia 26: 545–546.

    PubMed  CAS  Google Scholar 

  98. Bogart, J.P., Wasserman, A.O., 1972, Diploid-tetraploid cryptic species pairs: a possible clue to evolution by polyploidization in Anuran Amphibians. Cytogenetics 11: 7–24.

    PubMed  CAS  Google Scholar 

  99. Blair, W.F., 1958, Mating call in the speciation of Anuran Amphibians. Amer. Nat. 92: 27–51.

    Google Scholar 

  100. Johnson, C., 1966, Species recognition in the Hyla versicolor complex. Texas J. Sci. 18: 361–364.

    Google Scholar 

  101. Bogart, J.P., Jaslow, A.P., 1979, Distribution and call parameters of Hyla chrysoscelis and Hyla versicolor in Michigan. Roy. Ontario Mus. Life Sci. Contr. 117: 1–13.

    Google Scholar 

  102. Brown, L.E., Brown, J.R., 1972, Mating calls and distributional records of treefrogs of the Hyla versicolor complex in Illinois. J. Herpetology 6: 233–234.

    Google Scholar 

  103. Gerhardt, H.C., 1974, Mating call differences between eastern and western populations of the treefrog, Hyla chrysoscelis. Copeia 1974: 534–536.

    Google Scholar 

  104. Gerhardt, H.C., 1978, Temperature coupling in the vocal communication system of the gray tree frog, Hyla versicolor. Science 199: 992–994.

    PubMed  CAS  Google Scholar 

  105. Ralin, D.B., 1968, Ecological and reproductive differentiation in the cryptic species of the Hyla versicolor complex (Hylidae). Southwest. Nat. 13: 283–300.

    Google Scholar 

  106. Ralin, D.B., 1977, Evolutionary aspects of mating call variation in a diploid-tetraploid species complex of treefrogs (Anura). Evolution 31: 721–736.

    Google Scholar 

  107. Zweifel, R.G., 1970, Distribution and mating call of the treefrog, Hyla chrysoscelis at the northeastern edge of its range. Chesapeake Sci. 11: 94–97.

    Google Scholar 

  108. Cash, M.N., Bogart, J.P., 1978, Cytological differentiation of the diploid-tetraploid species pair of North American treefrogs (Amphibia, Anura, Hylidae). J. Herpetology 12: 555–558.

    Google Scholar 

  109. Maxson, L., Pepper, E., Maxson, R.D., 1977, Immunological resolution of a diploid-tetraploid species complex of tree frogs. Science 197: 1012–1013.

    PubMed  CAS  Google Scholar 

  110. Ralin, D.B., Selander, R.K., 1979, Evolutionary genetics of diploid-tetraploid sibling species of treefrogs. (Anura: Hylidae). Evolution 33: 595–608.

    Google Scholar 

  111. Blair, W.F., 1972, Evidence from hybridization, pp. 196–232, in Blair, W.F. (ed.), “Evolution in the Genus Bufo,” University of Texas Press, Austin.

    Google Scholar 

  112. Uzzell, T., Darvesky, I.S., 1975, Biochemical evidence for the hybrid origin of the parthenogenetic species of the Lacerta saxícola complex (Sauria:Lacertidae), with a discussion of some ecological and evolutionary implications. Copeia 1975: 204–222.

    Google Scholar 

  113. Abramoff, P., Darnell, R.M., Balsano, J.S., 1968, Electrophoretic demonstration of the hybrid origin of the gyno- genetic telost Poecilia formosa. Amer. Nat. 102: 555–558.

    CAS  Google Scholar 

  114. Suomalainen, E., Saura, A., 1973, Genetic polymorphism and evolution in parthenogenetic animals. I. Polyploid curcu- lionidae. Genetics 74: 489–508.

    PubMed  CAS  Google Scholar 

  115. White, M.J.D., Contreras, N., Cheney, J., Webb, G.G., 1977, Cytogenetics of the parthenogenetic grasshopper Warramaba (formerly Moraba) virgo and its bisexual relatives. II. Hybridization studies. Chromosoma 61: 127–148.

    PubMed  CAS  Google Scholar 

  116. Uzzell, T., 1970, Meiotic mechanisms of naturally occurring unisexual vertebrates. Amer. Nat. 104: 433–445.

    Google Scholar 

  117. Becak, M.L., Becak, W., 1970, Further studies on polyploid amphibians (Ceratophrydidae). III. Meiotic aspects of the interspecific triploid hybrid: Odontophrynus cultripes (2n=22) X 0. americanus (4n=44). Chromosoma 31: 377–385.

    PubMed  CAS  Google Scholar 

  118. Lowe, C.H., Wright, J.W., Cole, Ch.J., Bezy, R.L., 1970, Chromosomes and evolution of the species groups of Cnemidophorus (Reptilia, Teiidae). Syst. Zool. 19: 128–141.

    Google Scholar 

  119. Mancino, G.M., Ragghianti, M., Bucci-Innocenti, S., 1978, Experimantal hybridization within the genus Triturus (Urodela: Salamandridae) I. Spermatogenesis of F- hybrids, Triturus cristatus carnifex x vulgaris meridionalis. Chromosoma 69: 27–46.

    PubMed  CAS  Google Scholar 

  120. White, M.J.D., 1961, The role of chromosomal translocation in urodele evolution and speciation in the light of work done on grasshoppers. Amer. Nat. 95: 315–321.

    Google Scholar 

  121. Asher, J.H.,Jr., 1970, Parthenogenesis and genetic variability. II. One-locus models for various diploid populations. Genetics 66: 369–391.

    Google Scholar 

  122. Asher, J.H.,Jr., Nace, G.W., 1971, Th genetic structure and evolutionary fate of parthenogenetic amphibian populations as determined by Markovian analysis. Amer. Zool. 11: 381–398.

    Google Scholar 

  123. Becak, W., Pueyo, M.T., 1970, Gene regulation in the polyploid Amphibian Odontophrynus americanus. Exp. Cell Res. 63: 448–451.

    PubMed  CAS  Google Scholar 

  124. Ebendal, T., 1977, Karyotype and serum protein pattern in a Swedish population of Rana lessonae (Amphibia, Anura). Hereditas 85: 75–80.

    Google Scholar 

  125. Günther, R., Hähnel, S., 1976, Untersuchungen über den Genflusszwischen Rana ridibunda und Rana lessonae sowie die Rekombinat ions rat e bei der Bastardform Rana 00ABesculenta00BB (Anura, Ranidae). Zool. Anz. 197: 23–28.

    Google Scholar 

  126. Neaves, W.B., 1969, Adenosine deaminase phenotypes among sexual and parthenogenetic lizards in the genus Cnemidophorus (Teiidae). J. Exp. Zool. 171: 175–184.

    PubMed  CAS  Google Scholar 

  127. Neaves, W.B., Gerald, P.S., 1968, Lactate dehydrogenase isozymes in parthenogenetic teiid lizards (Cnemidophorus). Science 160: 1004–1005.

    PubMed  CAS  Google Scholar 

  128. Neaves, W.B., Gerald, P.S., 1969, Gene dosage at the lactate dehydrogenase B locus in triploid and diploid teiid lizards. Science 164: 557–558.

    PubMed  CAS  Google Scholar 

  129. Nevo, E., 1978, Genetic variation in natural populations: patterns and theory. Theor. Pop. Biol. 13: 121–177.

    CAS  Google Scholar 

  130. Powell, J.R., 1975, Protein variation in natural populations of animals, pp. 79–119, to Dobzhansky, T., Hecht, M.K., Steere, W.C. (eds.), “Evolutionary Biology” Vol. 8, Plenum, New York.

    Google Scholar 

  131. Selander, R.K., Johnson, W.E., 1973, Genetic variation among vertebrate species. Ann. Rev. Ecol. Syst. 4: 75–91.

    Google Scholar 

  132. Ohno, S., 1970, “Evolution by Gene Duplication.” Springer- Verlag. New York, Heidelberg, Berlin. 160 pp.

    Google Scholar 

  133. Cole, Ch.J., Lowe, C.H., Wright, J.W., 1969, Sex chromosomes in Teiid Whiptail lizards (genus Chemidophorus). Amer. Mus. Novitates No. 2395: 1–14.

    Google Scholar 

  134. Weiler, C., Ohno, S., 1962, Cytological confirmations of female heterógamety in the African water frog (Xenopus laevis). Cytogenetics 1: 217–223.

    PubMed  CAS  Google Scholar 

  135. Mikamo, A.E., Witschi, E., 1966, The mitotic chromosomes in Xenopus laevis (Baudin): normal, sex reversed and female WW. Cytogenetics 5: 1–19.

    PubMed  CAS  Google Scholar 

  136. Iriki, S., 1930, Studies on amphibian chromosomes I. On the chromosomes of Hyla arbórea japónica Guenther, Mem. Coll. Sei. Kyoto Imp. Univ. Ser. B. 5: 1–17.

    Google Scholar 

  137. Yosida, T.H., 1957, Sex chromosomes of the treefrog, Hyla arbórea japónica. J. Fac. Sei. Hokkaido Univ. Ser. VI. Zool. 13: 352–358.

    Google Scholar 

  138. Matsuda, K., 1963, Culture technique with some amphibian tissues and a chromosome study of the tree frog Hyla arbórea japónica. Zool. Mag. 72: 105–109.

    Google Scholar 

  139. Seto, T., 1964, The karyotype of Hyla arbórea japónica with some remarks on heteromorphism of the sex chromosomes. J. Fac. Sei. Hokkaido Univ. Ser. VI Zool. 15: 366–373.

    Google Scholar 

  140. Humphrey, R.R., 1945, Sex determination in ambystomid salamanders: a study of the progeny of females experimentally converted into males. Amer. J. Anat. 76: 33–66.

    Google Scholar 

  141. Ponse, K., 1930, Le problème du sexe et l’évolution de l’organe de Bidder du crapaud. Proc. 2nd Inter. Cong. Sex Res. Edinb. 202–210.

    Google Scholar 

  142. Ponse, K., 1941, La proportion sexuelle dans la descendance tissue des oeufs produits par l’organe de Bidder de crapauds femelles (Note préliminaire). Rev. Suisse Zool. 43: 541–544.

    Google Scholar 

  143. Kawamura, T., Tokunga, C., 1952, the sex of triploid frogs, Rana japonica Gunther. J. Sei. Hiroshima Univ. Ser. B. Div. 1, 13: 121–128

    Google Scholar 

  144. Sato, M., 1952, The sex of triploid frogs. Rana limnocharis. J. Sei. Hiroshima Univ. Ser. B. Div. 1, 13: 155–161.

    Google Scholar 

  145. Witsehi, E., 1927, Testis grafting in tadpoles of Rana temporaria L., and its bearing on the hormone theory of sex determination. J. Exp. Zool. 47: 269–294.

    Google Scholar 

  146. Witsehi, E., 1928, Effeet of high temperature on the gonads of frog larvae. Proe. Soe. Exp. Biol. Med. 25: 729–730.

    Google Scholar 

  147. Kawamura, T., Yokota, R., 1959, The offspring of sex-reversed females of Rana japoniea Guenther. J. Sei. Koroshima Univ. Ser. B., Div. 1. 18: 31–38.

    Google Scholar 

  148. Muller, W.P., 1977, Diplotene ehromosomes of Xenopus hybrid ooeytes. Chromosoma 59: 273–282.

    PubMed  CAS  Google Scholar 

  149. Martin, W.F., 1972, Evolution of voealization in the genus Bufo, pp. 279–309, to Blair, W.F. (ed.), “Evolution in the Genus Bufo,” University of Texas Press, Austin.

    Google Scholar 

  150. Bisbee, C.A., Baker, M.A., Wilson, A.C., Hadji-Azimi, I., Fisehberg, M., 1976, Albumin phylogeny for elawed frogs (Xenopus). Seienee 195: 785–787.

    Google Scholar 

  151. Bush, G.L., 1975, Modes of animal speeiation. Ann. Rev. Eeol. Syst. 6: 339–364.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Bogart, J.P. (1980). Evolutionary Implications of Polyploidy in Amphibians and Reptiles. In: Lewis, W.H. (eds) Polyploidy. Basic Life Sciences, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3069-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3069-1_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3071-4

  • Online ISBN: 978-1-4613-3069-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics