Polyploidy pp 313-340 | Cite as

Role of Polyploidy in the Evolution of Fishes

  • R. Jack Schultz
Part of the Basic Life Sciences book series (BLSC, volume 13)


Polyploidy is not generally believed to have played a major role in the evolution of animals. This view has been fostered principally by G. L. Stebbins and M. J. D. White, both of whom as early as the 1940’s advocated that Polyploidy at best has played a secondary role in evolution; neither of them has substantially altered this view in recent years (1,2). Some of the arguments against the importance of Polyploidy are: (a) that the large amount of gene duplication in polyploids dilutes the effects of new mutations so significant adaptive changes are unlikely, (b) that Polyploidy in animals is restricted mainly to asexual forms which are evolutionary dead ends, and (c) the number of polyploid animals relative to diploids is small.


Parental Species Crucian Carp Carassius Auratus Spinous Loach Rana Ridibunda 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Stebbins, G.L., 1977, “Process of Organic Evolution,” ed. 3, Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  2. 2.
    White, M.J.D., 1978, “Modes of Speciation,” W.H. Freeman, San Francisco.Google Scholar
  3. 3.
    Ohno, S., 1970, “Evolution by Gene Duplication,” Springer- Verlag,New York.Google Scholar
  4. 4.
    Ohno, S., 1974, “Animal Cytogenetics,” Vol. 4, Chordata 1. GerbrUder Borntraeger, Berlin.Google Scholar
  5. 5.
    Schwartz, F.J,, 1972, World Literature to Fish Hybrids with an Analysis by Family, Species and Hybrid. Gulf Coast Research Laboratory Museum, Ocean Springs, Mississippi.Google Scholar
  6. 6.
    Ohno, S., Atkin, N.B., 1966, Comparative DNA values and chromosome complements of eight species of fishes. Chromosoma 18: 455–466.PubMedCrossRefGoogle Scholar
  7. 7.
    Hinegardner, R., 1968, Evolution of cellular DNA content in teleost fishes. Amer. Nat. 102: 517–523.CrossRefGoogle Scholar
  8. 8.
    Patterson, C., 1978, “Evolution,” Cornell University Press, Ithaca, New York.Google Scholar
  9. 9.
    Harrington, R.W., 1961, Oviparous hermaphroditic fish with interal self-fertilization. Science 134: 1749–1750.PubMedCrossRefGoogle Scholar
  10. 10.
    Svärdson, G., 1945, Chromosome studies on Salmonidae. Report of the Institute of Freshwater Research. Drottningholm 23: 1–151.Google Scholar
  11. 11.
    Rees, H., 1964, The question of Polyploidy in the Salmonidae. Chromosoma 15: 275–279.PubMedCrossRefGoogle Scholar
  12. 12.
    Taylor, K.M., 1967, The chromosomes of some lower chordates. Chromosoma 21: 181–188.PubMedCrossRefGoogle Scholar
  13. 13.
    Greenwood, P.H., Rosen, D.E., Weitzman, S.H., Myers, G.S., 1966, Phyletic studies of teleostean fishes, with a provisional classification of living forms. Bull. Amer. Mus. Nat. 131: 341–455.Google Scholar
  14. 14.
    Schultz, R.J., 1967, Gynogenesis and triploidy in the viviparous fish Poeciliopsis. Science 157: 1564–1567.PubMedCrossRefGoogle Scholar
  15. 15.
    Chen, T.R., Ebeling, A.W., 1968, Karyological evidence of female heterogamety in the mosquitofish Gambusia affinis ( Baird and Girad ). Copeia 1968: 70–75.Google Scholar
  16. 16.
    Roberts, F.L., 1964, A chromosome study of twenty species of Centrarchidae. J. Morph. 115: 401–418.PubMedCrossRefGoogle Scholar
  17. 17.
    Ohno, S., Wolf, V., Atkin, N.B., 1968, Evolution from fish to mammals by gene duplication. Hereditas 59: 169–187.PubMedCrossRefGoogle Scholar
  18. 18.
    Hinegardner, R., Rosen, D.E., 1972, Cellular DNA content and the evolution of teleostean fishes. Amer. Nat. 106: 621–644.CrossRefGoogle Scholar
  19. 19.
    Booke, H.E., 1968, Cytotaxonomic studies of the coregonine fishes of the Great Lakes, USA: DNA and karyotype analysis. J. Fish Res. Board Canada 25: 1667–1687.CrossRefGoogle Scholar
  20. 20.
    Simon, R.C., 1963, Chromosome morphology and species evolution in the five North American species of Pacific salmon (Oncorhynchus). J. Morph. 112: 77–97.PubMedCrossRefGoogle Scholar
  21. 21.
    Simon, R., Dollar, A., 1963, Cytological aspects of speciation in two North American teleosts. Salmo gairdneri and Salmo clarki lewisi. Canad. J. Genet. Cytol. 5: 43–49.PubMedGoogle Scholar
  22. 22.
    Viktorovsky, R.M., Chromosome sets of Coregonus peled and C. lavaretus baunti. Tsitologiya 6: 636–638.Google Scholar
  23. 23.
    Ohno, S., Muramoto, J., Klein, J., Atkin, N.B., 1969, Diploid- tetraploid relationship in clupeoid and salmonoid fish, pp. 139–147, in “Chromosomes Today,” Vol. I I, Darlington, C.D., Lewis, K.R. (eds.), Oliver and Boyd, Edinburgh.Google Scholar
  24. 24.
    Wolf, U., Engel, W., Faust, J., 1970, Zum Merchanismus der Diploidisierung in der Wirbeltierevolution: Koexistenz von tetrasomen disomen Genloci der Isozitrat-Dehydrogenasen bei der Regenbogenforelle (Salmo irideus). Humangenetik 9: 150–156.PubMedCrossRefGoogle Scholar
  25. 25.
    Engel, W., Op’t Hof, J., Wolf, U., 1970, Genduplikation durch polyploide Evolution: die Isoenzyme der Sorbitdehydrogenese bei herings-und lacksartigen Fischen (Isospondyli), Humangenetik 9: 157–163.PubMedCrossRefGoogle Scholar
  26. 26.
    Keyl, H.G., 1966, Increases of DNA in chromosomes, pp. 99–101, in “Chromosomes Today,” Vol. I, Darlington, C.D., Lewis, K.R. (eds.), Oliver and Boyd, Edinburgh.Google Scholar
  27. 27.
    Uyeno, T., Smith, G.R., 1972, Tetraploid origin of the karyotype of catostomid fishes. Science 175: 644–646.PubMedCrossRefGoogle Scholar
  28. 28.
    Romer, A.S., 1966, “Vertebrate Paleontyology,” University of Chicago Press, Chicago.Google Scholar
  29. 29.
    Uyeno, T., Listed in Uyeno and Smith (Science 175: 644–646, 1972) as unpublished data.Google Scholar
  30. 30.
    Ohno, S., Muramoto, J., Christian, L., 1967, Diploid-tetraploid relationship among old world members of the fish family Cyprinidae. Chromosoma 23: 1–9.CrossRefGoogle Scholar
  31. 31.
    Muramoto, J., Ohno, S., Atkin, N.B., 1968, On the diploid state of the fish order Ostariophysi. Chromosoma 24: 59–66.PubMedCrossRefGoogle Scholar
  32. 32.
    Wolf, U., Ritter, H., Atkin, N.B., Ohno, S., 1969, Polyploidization in the fish family Cyprinidae, order Cypriniformes. I. DNA-content and chromosome sets in various species of Cyprinidae. Humagenetik 7: 240–244.CrossRefGoogle Scholar
  33. 33.
    Klose, J., Wolf, U., Hitzeroth, H., Riter, H., Ohno, S., 1969, Polyploidization in the fish family Cyprinidae, order Cypriniformes. II. Duplication of the gene loci coding for lactate dehydrogenase (E.c.: and 6-phosphogluconate dehydrogenase (E.c.: in various species of Cyprinidae. Humagenetik 7: 245–250.CrossRefGoogle Scholar
  34. 34.
    Quiroz-Gutierrez, A., Ohno, S., 1970, The evidence of gene duplication for S-form NADP-linked isocitrate dehydrogenase in carp and goldfish. Biochem. Genet. 4: 98–99.CrossRefGoogle Scholar
  35. 35.
    Bender, K., Ohno, S., 1968, Duplication of the autosomally inherited 6-phosphogluconate dehydrogenase gene locus in tetraploid species of cyprinid fish. Biochem. Genet. 2: 101–107.PubMedCrossRefGoogle Scholar
  36. 36.
    Kobayasi, H., Kawashima, Y., Takeuchi, N., 1970, Comparative chromosome studies in the genus Carassius, especially with a finding of Polyploidy in the ginbuna. Jap. J. Ichthyol. 17: 153–160.Google Scholar
  37. 37.
    Kobayasi, H., 1971, A cytological study on gynogenesis of the triploid ginbuna (Carassius auratus langsdorfii). Zool. Mag. 80: 316–322.Google Scholar
  38. 38.
    Kobayasi, H., Hashida, M., 1977, Morphological and cytological studies in back-cross hybrids of F1 fishes between the kinbuna (Carasslus auratus subsp.) and the crucian carp (Carassius carassius), Jap. Women’s Univ. J. ( Home Economics) Nol 24.Google Scholar
  39. 39.
    Kobaysi, H., 1977, Hybridization in Japanese funa, Carassius auratus. Proc. 5th Japan-Soviet Joint Symp. Aquaculture. Sept. 1976, Tokyo and Sapporo.Google Scholar
  40. 40.
    Liu, S., Sezaki, K., Hashimoto, K., Kobayasi, H., Nakamura, M., 1968, Simplified techniques for determination of Polyploidy in ginbuna Carassius auratus langsdorfi. Bull. Jap. Soc. Sci. Fisheries 44: 601–606.CrossRefGoogle Scholar
  41. 41.
    Golavinskaya, K.A., Romashov, D.D., Cherfas, N.B., 1965, The unisexual and bisexual forms of the silver goldfish (Carassius auratus gibelio Block). Vopr. Iktiologii 5: 614–629.Google Scholar
  42. 42.
    Lieder, U., 1959, Über die Eientwicklung bei männchenlosen Stämmen der Silberkarauche Carassius auratus gibelio (Block) (Vertebrata, Pisces). Biol. Zbl. 78: 284–291.Google Scholar
  43. 43.
    Cherfas, N.B., 1966, Natural triploidy in females of the unisexual form of silver carp [goldfish] (Carassius auratus gibelio Block). Genetika 5: 16–24.Google Scholar
  44. 44.
    Kobayasi, H., 1976, Comparative study of karayotypes in the small and large races of spinous loaches (Cobitus biwae). Zool. Mag. 85: 84–87.Google Scholar
  45. 45.
    Sezaki, K., Kobayasi, H., 1978, Comparison of erythrocyte size between diploid and tetraploid in spinois loach, Cobitis biwae. Bull. Jap. Soc. Sci. Fisheries 44: 851–854.CrossRefGoogle Scholar
  46. 46.
    Cimino, M.C., 1973, Karyotypes and erythrocyte sizes of some diploid and triploid fishes of the genus Poeciliopsis. J. Fish. Res. Board Canada 30: 1736–1737.CrossRefGoogle Scholar
  47. 47.
    Swarup, H., 1959, Effect of triploidy on the body size, general organization and cellular structure in Gasterosteus (L.). J. Genetics 56: 143–155.CrossRefGoogle Scholar
  48. 48.
    Purdom, C.E., 1973, Induced Polyploidy in plaice (Pleuronectes platessa) and its hybrid with the flounder (Platichythes flesus). Heredity 29: 11–24.CrossRefGoogle Scholar
  49. 49.
    Valenti, R.J., 1975, Induced Polyploidy in Tilapia aurea (Steindachner) by means of temperature shock treatment. J. Fish. Biol. 7: 519–528.CrossRefGoogle Scholar
  50. 50.
    Fankhauser, G., 1941, Cell size, organ and body size in triploid newts (Triturus viridescens). J. Morph. 68: 161–177.CrossRefGoogle Scholar
  51. 51.
    Nygren, A., Edlund, P., Hirsch, U., Aksgren, L., 1968, Cytological studies in perch (Perca fluviatilis L.), pike (Esox lucius L.), Pike-perch (Lucioperca lucioperca L.), and ruff (Acerina cernua L.). Hereditas 59: 518–524.CrossRefGoogle Scholar
  52. 52.
    Dingerkus, G., Howell, VÍ.M., 1976, Karyotypic analysis and evidence of tetraploidy in the North American paddlefish, Polyodon spathula. Science 194: 842–844.PubMedCrossRefGoogle Scholar
  53. 53.
    Ohno, S., Muramoto, J., Stenius, C., Christian, L., Kittrell, W.A., 1969, Microchromosomes in holocephalian, chondrostean and holostean fishes. Chromosoma 26: 35–40.PubMedCrossRefGoogle Scholar
  54. 54.
    Miller, R.R., Schultz, R.J., 1959, All-female strains of the teleost fishes of the genus Poeciliopsis. Science 130: 1656–1657.PubMedCrossRefGoogle Scholar
  55. 55.
    Schultz, R.J., 1966, Hybridization experiments with an all- female fish of the genus Poeciliopsis. Biol. Bull. 130: 415–429.CrossRefGoogle Scholar
  56. 56.
    Schultz, R.J., 1969, Hybridization, unisexuality, and Polyploidy in the teleost Poeciliopsis (Poeciliidae) and other vertebrates. Amer. Nat. 108: 605–619.CrossRefGoogle Scholar
  57. 57.
    Vrijenhoek, R.C., 1972, Genetic relationships of unisexual- hybrid fishes to their progenitors using lactate dehydrogenase isozymes as gene markers (Poeciliopsis, Poeciliidae). Amer. Nat. 106: 754–766.CrossRefGoogle Scholar
  58. 58.
    Vrijenhoek, R.C., Schultz, R.J., 1974, Evolution of a trihybrid unisexual fish (Poeciliopsis, Poeciliidae). Evolution 28: 306–319.CrossRefGoogle Scholar
  59. 59.
    Moore, W.S., 1976, Components of fitness in the unisexual fish Poeciliopsis monacha-occidentalis. Evolution 30: 564–578.CrossRefGoogle Scholar
  60. 60.
    Miller, R.R., 1960, Four new species of viviparous fishes, genus Poeciliopsis, from northwestern Mexico. Occasional Papers Mus. Zool., Univ. Michigan, No. 619. This publication lists one Rio Fuerte locality for monacha at Guirocoba; two others, one discovered by Miller at El Cajon is published under Vrijenhoek et al. 1978 and one discovered by J. Lanza is published under Bulger and Schultz 1979. The Rio Sinaloa site, discovered by Mller at Coronado, is unpublished.Google Scholar
  61. 61.
    Thibault, R.E., Schultz, R.J., 1978, Reproductive adaptations among viviparous fishes ( Cyprinodontiformes: Poeciliidae). Evolution 32: 320–333.Google Scholar
  62. 62.
    Schultz, R.J., 1977, Evolution and ecology of unisexual fishes, pp. 277 - 331, in “Evolutionary Biology,” Hecht, M.K., Steer, W.C., Wallace, B. (eds.). Vol. 10, Plenum, New York.Google Scholar
  63. 63.
    Cimino, M.C., 1972, Egg-production, polyploidization and evolution in a diploid all-female fish of the genus Poeciliopsis. Evolution 26: 294–306.CrossRefGoogle Scholar
  64. 64.
    Schultz, R.J., 1961, Reproductive mechanisms of unisexual and bisexual strains of the viviparous fish Poeciliopsis. Evolution 15: 302 - 325.CrossRefGoogle Scholar
  65. 65.
    Angus, R.A., Schultz, R.J., 1979, Clonal diversity in the unisexual fish Poeciliopsis monacha-lucida: a tissue graft analysis. Evolution 33: 27–40.CrossRefGoogle Scholar
  66. 66.
    Schultz, R.J., 1973, Origin and synthesis of a unisexual fish, pp. 207-211, in “Genetics and Mutagenesis of Fish,” Schröder, J.H. (ed.), Springer-Verlag, Berlin.Google Scholar
  67. 67.
    Schultz, R.J., 1961, Reproductive mechanism of unisexual and bisexual strains of the viviparous fish Poeciliopsis. 15: 302–325.Google Scholar
  68. 68.
    Moore, W.S., Miller, R.R., Schultz, R.J., 1970, Distribution adaptation and probable origin of an all-female form of Poeciliopsis (Pisces: Poeciliidae) in northwestern Mexico. Evolution 24: 806–812.Google Scholar
  69. 69.
    Schultz, R.J., 1971, Special adaptive problems associated with unisexual fishes. Amer. Zool. 11: 351–360.Google Scholar
  70. 70.
    Schultz, R.J., 1973, Unisexual fish: laboratory synthesis of a “species.” Science 179: 180–181.PubMedCrossRefGoogle Scholar
  71. 71.
    Vrijenhoek, R.C., 1979, Factors affecting clonal diversity and coexistence, (in press).Google Scholar
  72. 72.
    Schultz, R.J., 1967, Gynogenesis and triploidy in the viviparous fish Poeciliopsis. Science 157: 1564–1567.PubMedCrossRefGoogle Scholar
  73. 73.
    Schultz, R.J., (unpublished).Google Scholar
  74. 74.
    Cimino, M.C., 1974, The nuclear DNA content of diploid and triploid Poeciliopsis and other poeciliid fishes with reference to the evolution of unisexual forms. Chromosoma 47: 297–307.PubMedCrossRefGoogle Scholar
  75. 75.
    Cimino, M.C., 1973, Meiosis in triploid all-female fish (Poeciliopsis, Poeciliidae). Science 175: 1484.CrossRefGoogle Scholar
  76. 76.
    Hubbs, C.L., Hubbs, L.C., 1932, Apparent parthenogenesis in nature, in a form of fish of hybrid origin. Science 76: 628–630.PubMedCrossRefGoogle Scholar
  77. 77.
    Drewry, G.E., 1964, “Interactions between a bisexual fish species and its gynogenetic sexual parasite,” Bull. Texas Mem. Mus. No 8 Appendex 1, 67.Google Scholar
  78. 78.
    Balsano, J.S., Darnell, R.M., Abramoff, P., 1972, Electro- phoretic evidence of triploidy associated with populations of the gynogenetic teleost Poecilia formosa. Copeia 1972: 292–297.CrossRefGoogle Scholar
  79. 79.
    Rasch, E.M., Balsano, J.S., 1974, Biochemical and cytogenetic studies of Poecilia from eastern Mexico. II. Frequency, perpetuation, and probable origin of triploid genomes in females associated with Poecilia formosa. Rev. Biol. Trop. 21: 351–381; and personal communication.Google Scholar
  80. 80.
    Rasch, E.M., Manaco, P. J., Balsano, J.S., 1978, Identification of a new form of triploid hybrid fish by DNA-feulgen cytophotometry. J. Histochem. Cytochem. 26: 218 (abst.).Google Scholar
  81. 81.
    Tai, W., 1970, Multipolar meiosis in diploid crested wheatgrass, Agropyron cristatum. Amer. J. Bot. 57: 1160–1169.CrossRefGoogle Scholar
  82. 82.
    Purdom, C.E., 1976, Genetic techniques in flatfish culture. J. Fish. Res. Board Canada 33: 1088–1099.CrossRefGoogle Scholar
  83. 83.
    Stanley, J.G., Biggers, C.J., Schultz, D., 1976, Isozymes in androgenetic and gynogenetic white amur, gynogenetic carp, and carp-amur hybrids. J. Heredity 67: 129–134. (This article provides a good literature review on the subject of gynogenesis.)Google Scholar
  84. 84.
    Rasch, E.M., Darnell, R.M., Kallman, K.D., Abramoff. P., 1965, Cytophotometric evidence for triploidy in hybrids of the gynogenetic fish, Poecilia formosa. J. Exp. Zool. 160: 155–170.PubMedCrossRefGoogle Scholar
  85. 85.
    Schultz, R.J., Kallman, K.D., 1968, Triploid hybrids between the all-female teleost Poecilia formosa and Poecilia sphenops. Nature 219: 280–282.CrossRefGoogle Scholar
  86. 86.
    Muller, H.J., 1925, Why Polyploidy is rarer in animals than in plants. Amer. Nat. 59: 346–353.CrossRefGoogle Scholar
  87. 87.
    Ferris, S.D., Whitt, G.S., 1977, Loss of duplicate gene expression after polyploidization. Nature 265: 258–260.PubMedCrossRefGoogle Scholar
  88. 88.
    Cleland, R.E., 1936, Some aspects of the cytogenetics of Oenothera. Bot. Rev. 2: 316-318; Cleland, R.E., 1950, Studies on Oenothera cytogenetics and phylogeny. Indiana Univw Pubi., Sci. Ser. 16.Google Scholar
  89. 89.
    Schultz, R.J., Vrijenhoek, R.C., (unpublished).Google Scholar
  90. 90.
    Tunner, H., 19/3, Das Albumin und andere Bluteiweisse bei Rana ridibunda Pallas, Rana lessonae Camerano. Rana esculenta Linné und daren Hybriden. A. Zool. Syst. Evol. Forschung 11: 219–233.Google Scholar
  91. 91.
    Uzzell, T., Berger, L., 1975, Electrophoretic phenotypes of Rana ridibunda. Rana lessonae, and their hybridogénetic associate. Rana esculenta. Proc. Acad. Nat. Sci. (Philadelphia) 127: 13–24.Google Scholar
  92. 92.
    Uzzell, T., Günther, R., Berger, L., 1977, Rana esculenta and Rana ridibunda: a leaky hybridogenetic system? Proc. Acad. Nat. Sci. (Philadelphia) 128: 147–171.Google Scholar
  93. 93.
    Moav, R., Brody, T., Hulata, G., 1978, Genetic improvement of wild fish populations. Science 201: 1090–1094.PubMedCrossRefGoogle Scholar
  94. 94.
    Donaldson, L.R., Menasveta, D., 1961, Selective breeding of Chinook salmon. Trans. Amer. Fish. Soc. 90: 160–164.CrossRefGoogle Scholar
  95. 95.
    Thibault, R.E., 1978, Ecological and evolutionary relationships among diploid and triploid unisexual fishes associated with the bisexual species, Poeciliopsis lucida (Cyprinodontiformes: Poeciliidae). Evolution 32: 613–623.CrossRefGoogle Scholar
  96. 96.
    Moore, W.S., 1976, Components of fitness in the unisexual fish Poeciliopsis monacha-occidnetalis. Evolution 30: 564–578.CrossRefGoogle Scholar
  97. 97.
    Kallman, K.D., 1962, Population genetics of the gynogenetic telost, Mollienesia formosa (Girard). Evolution 64: 497–504; Kallman, D.K., 1962, Gynogenesis in the telost, Mollienesia formosa (Girard) (with discussion of the detection of parthenogenesis in vertebrates by tissue transplantation). J. Genetics 58: 7–21; Kallman, K.D., 1964, Homozygosity in a gynogenetic fish - Poecilia formosa. Genetics 50: 260–261; Darnell, R.M., Lamb, E., Abramoff, P., 1967, Matroclinous inheritance and clonal structure of a Mexican population of the gynogenetic fish, Poecilia formosa. Evolution 21: 168–173.CrossRefGoogle Scholar
  98. 98.
    Moore, W.S., 1977, A histocompatability analysis of inheritance in the unisexual fish Poeciliopsis 2 monacha-lucida. Copeia 1977: 213–223; Vrijenhoek, R.C., Angus, R.A., Schultz, R.J., 1977, Variation and heterozygosity in sexual clonally reproducing populations. Evolution 31: 767–781; Vrijenhoek, R.C., Angus, R.A., Schultz, R.J., 1978, Variation and clonal structure in a unisexual fish. Amer. Nat. 112: 41–45.CrossRefGoogle Scholar
  99. 99.
    Angus, R.A., 1979, Geographical dispersal and clonal diversity in unisexual fish populations. Amer. Nat. (in press).Google Scholar
  100. 100.
    Vrijenhoek, R.C., 1978, Coexistence of clones in a heterogeneous environment. Science 199: 549–552.PubMedCrossRefGoogle Scholar
  101. 101.
    Keegan-Rogers, V., doctoral research in progress.Google Scholar
  102. 102.
    Bulger, A.J., Schultz, 1979, Heterosis and interclonal variation in thermal tolerance in unisexual fishes. Evolution 33: (in press).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • R. Jack Schultz
    • 1
  1. 1.Ecology Section, Biological Sciences GroupUniversity of ConnecticutStorrsUSA

Personalised recommendations