Studies of Literally Two-Dimensional Magnets of Manganese Stearate

  • Melvin Pomerantz
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 51)

Abstract

Phase transitions are fascinating physical phenomena. It is a remarkable fact that presumably short-range interactions between atoms can give rise to long-range order among them. The detailed explanation of such effects is a challenging problem in statistical mechanics. In order to simplify the problem and to provide test cases for theoretical methods, theoreticians have concentrated on model systems with low dimensionality; summations over one dimensional (1-d) or two-dimensional (2-d) spaces are usually easier than for 3-d. It has turned out that theories predict that low-dimensional systems will have special properties, rather unlike 3-d systems in many cases. The hope is that these theories can also be applied to the 3-d world. But, considering the simplifications of theories and the complications of Nature, one wonders if the theories are adequate. It seems that theorists have chosen to consider 1-d and 2-d models in order to make their work easier, but this has placed experimenters in the awkward position of trying to test the theories in a world that seems stubbornly three dimensional. Other lectures at this school have shown that it has proved possible to produce and study systems that closely resemble two-dimensional objects, in the form of films of atoms or molecules adsorbed on surfaces.

Keywords

Vortex Microwave Anisotropy Graphite Cadmium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Theory is extensively reviewed in the series Phase Transitions and Critical Phenomena Edited by C. Domb and M. S. Green. See also Ref. 6, and Proceedings of Fermi Schools, Courses LI (1971), LIX (1976), North-Holland.Google Scholar
  2. 2.
    M. E. Fisher in Essays in Physics Vol. 4:43, (1972) Academic Press, R. B. Griffiths, Phys. Rev. Lett. 24: 1479 (1970).Google Scholar
  3. 3.
    M. E. Fisher, S. K. Ma, B. G. Nickel, Phys. Rev. Lett. 29:917 (1972).ADSCrossRefGoogle Scholar
  4. 4.
    L. Onsager, Phys. Rev. 65:117 (1944).MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    N. D. Mermin, and H. Wagner, Phys. Rev. Lett. 17:1133 (1966).ADSCrossRefGoogle Scholar
  6. 6.
    J. M. Kosterlitz and D. J. Thouless, Prog. in Low Temp. Phys. VIIB, p. 371 Ed. D. F. Brewer, North-Holland, (1978).Google Scholar
  7. 7.
    C. Herring and C. Kittel, Phys. Rev. 81:869 (1951).ADSMATHCrossRefGoogle Scholar
  8. 8.
    M. E. Lines, J. Phys. Chem. Solids 31:101 (1970).ADSCrossRefGoogle Scholar
  9. 9.
    Names are withheld to protect the guilty.Google Scholar
  10. 10.
    F. Bloch, Z. Phys. 61:206 (1930).ADSCrossRefGoogle Scholar
  11. 11.
    B. E. Argyle, S. H. Charap, and E. W. Pugh, Phys. Rev. 132:2051 (1963).ADSCrossRefGoogle Scholar
  12. 12.
    H. Ikeda, M. T. Hutchings and M. Suzuki, J. Phys. C, 11:L 359 (1978). For a review of quasi 2-d experiments, see L. J. de Jongh and A. R. Miedema, Adv. Phys. 23:1 (1974).ADSGoogle Scholar
  13. 13.
    J. P. McTague and M. Neilsen, Phys. Rev. Lett. 37:596 (1976).ADSCrossRefGoogle Scholar
  14. 14.
    S. Gregory, Phys. Rev. Lett. 40:723 (1978).ADSCrossRefGoogle Scholar
  15. 15.
    O. Vilches, unpublished results presented at this school.Google Scholar
  16. 16.
    V. D. Borman, B. I. Buttsev, V. A. Konakov, B. I. Nikolaev, and V. I. Troyan, JETP Lett. 27:527 (1978).ADSGoogle Scholar
  17. 17.
    Reviewed by G. L. Gaines, Insoluble Monolayers at Liquid-Gas Interfaces Interscience, New York (1966).Google Scholar
  18. 18.
    I. Langmuir, J. Am. Chem. Soc. 39:1848 (1917).CrossRefGoogle Scholar
  19. 19.
    K. B. Blodgett, J. Am. Chem. Soc. 57:1007 (1935).CrossRefGoogle Scholar
  20. 20.
    J. Messier and G. Marc, J. de Physique 32:799 (1971). cf. also P. A. Chollet, J. Phys. C 7:4127 (1974).CrossRefGoogle Scholar
  21. 21.
    D. W. Deamer, D. W. Meek and D. G. Cornwell, J. of Lipid Res. 8:255 (1967).Google Scholar
  22. 22.
    G. A. Wolstenholme and J. H. Schulman, Proc. Farad. Soc. 46:475 (1950).CrossRefGoogle Scholar
  23. 23.
    C. J. Ballhausen, Introduction to Ligand Field Theory, McGraw-Hill, New York, 1962.MATHGoogle Scholar
  24. 24.
    J. H. van Vleck, Phys. Rev. 45:405 (1934).Google Scholar
  25. 25.
    S. P. Kowalczyk, L. Ley, R. A. Pollak, F. R. McFeely and D. A. Shirley, Phys. Rev. B7:4009 (1973).ADSGoogle Scholar
  26. 26.
    M. Pomerantz and R. A. Pollak, Chem. Phys. Lett., 31:602 (1975).ADSCrossRefGoogle Scholar
  27. 27.
    M. Avram and G. D. Mateescu, Infra Red Spectroscopy, Wiley Interscience, (1972).Google Scholar
  28. 28.
    B. Ellis and H. Pyszora, Nature 181:181 (1958).ADSCrossRefGoogle Scholar
  29. 29.
    M. Pomerantz, S. Herd and E. E. Simonyi, Bull. Am. Phys. Soc. 23:431 (1978), and to be published.Google Scholar
  30. 30.
    N. J. Harrick, J. Phys. Chem. 64:1110 (1960), Internal Reflection Spectroscopy, Wiley and Sons, N. Y., (1967).CrossRefGoogle Scholar
  31. 31.
    A. Hjortsberg, W. P. Chen, E. Burstein and M. Pomerantz, Optics Comm. 25:65 (1978).ADSCrossRefGoogle Scholar
  32. 32.
    J. F. Stephens and C. Tuck-Lee, Appl. Crystallogr. 2:1 (1969). Note that Figs. 4 and 6 are switched.CrossRefGoogle Scholar
  33. 33.
    J. Kirtley and M. Pomerantz (unpublished).Google Scholar
  34. 34.
    F. Kopp, U. P. Fringeli, K. Mühlethaler and H. H. Günthard, Biophys. Struct. Mechanism 1:75 (1975).CrossRefGoogle Scholar
  35. 35.
    M. Pomerantz, F. Dacol and A. Segmüller, Phys. Rev. Lett. 40:246 (1978).ADSCrossRefGoogle Scholar
  36. 36.
    D. C. Bisset and J. Ibal, Proc. Phys. Soc. London, Sect. A 67:315 (1954).ADSCrossRefGoogle Scholar
  37. 37.
    M. Pomerantz and A. Segmüller, Thin Solid Films (to be published).Google Scholar
  38. 38.
    R. M. Nicklow, M. Pomerantz, and A. Segmüller, Bull. Am. Phys. Soc. 24:488 (1979).Google Scholar
  39. 39.
    ESR in quasi 2-d is reviewed by P. M. Richards, in Proceedings of the International School of Physics “Enrico Fermi”, Course LIX, (1976).Google Scholar
  40. 40.
    H. P. Boesch, U. Schmocker, F. Waldner, K. Emerson, and J. E. Drumheller, Phys. Lett. 36A. 461 (1971).ADSGoogle Scholar
  41. 41.
    P. M. Richards and M. Salamon, Phys. Rev. B 9:32 (1974).ADSCrossRefGoogle Scholar
  42. 42.
    M. Pomerantz, Solid State Comm., 27:1413 (1978).ADSCrossRefGoogle Scholar
  43. 43.
    J. Axe, private communications.Google Scholar
  44. 44.
    M. Pomerantz and A. Aviram, Solid State Comm., 20:9 (1976).ADSCrossRefGoogle Scholar
  45. 45.
    T. Haseda, H. Yamakawa, M. Ishizuka, Y. Okuda, T. Kubota, M. Hata, and K. Amaya, Solid State Comm. 24:599 (1977). Also N. Giordano and D. Prober, private communications.ADSCrossRefGoogle Scholar
  46. 46.
    C. Kittel, J. Phys. Rad., 12:149 (1951).CrossRefGoogle Scholar
  47. 47.
    I. Dzyaloshinsky, J. Phys. Chem. Solids 4:241 (1958).ADSCrossRefGoogle Scholar
  48. 48.
    T. Moriya, Magnetism: 1, 85 Ed. Rado and Suhl, Academic Press. (1963).Google Scholar
  49. 49.
    A. S. Borovik-Romanov in Elements of Theoretical Magnetism, Ed. S. Krupicka, and J. Sternberk, p. 193, Iliffe Books Ltd. (London) (1968).Google Scholar
  50. 50.
    K. Saiki, J. Phys. Soc. Japan 33:1284 (1972).ADSCrossRefGoogle Scholar
  51. 51.
    H. Yoshioka and K. Saiki, J. Phys. Soc. Japan 33:1566 (1972).ADSCrossRefGoogle Scholar
  52. 52.
    The APL/360 program was written by R. Evans, assisted by R. Linn.Google Scholar
  53. 53.
    A. S. Borovik-Romanov, N. M. Kreines, and L. A. Prozorova, Sov. Phys. JETP 18:46 (1964).Google Scholar
  54. 54.
    M. Pomerantz and A. Taranko, unpublished.Google Scholar
  55. 55.
    F. Ferrieu, private communication.Google Scholar
  56. 56.
    L. Neel, Rev. Mod. Phys. 25:58 (1953).ADSCrossRefGoogle Scholar
  57. 57.
    Y. Imry, Ann. of Phys. 51:1 (1969) and references therein.ADSCrossRefGoogle Scholar
  58. 58.
    D. Goodstein and S. K. Ma, semi-private communications.Google Scholar
  59. 59.
    R. A. Pelcovits and D. R. Nelson, Phys. Lett. 57A:23 (1976).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Melvin Pomerantz
    • 1
  1. 1.IBM T. J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations