A Model for a Molecular Cloning System in Higher Plants: Isolation of Plant Viral Promotors

  • Richard B. Meagher
  • Thomas D. McKnight
Part of the NATO Advanced Study Institutes Series book series (volume 29)


Several different technical approaches could be taken in the development of a genetic engineering system in higher plants. Our laboratory is planning to construct molecular cloning vehicles in E. coli which can be used in higher plant cells and in regenerated higher plants. By combining isolated transcriptional “promotors” from plant DNA and known bacterial genes, we hope to obtain selectable genetic markers for plant cells. Fragments of rDNA and other repeat sequence DNA from host plants are being isolated as a homologous sequence for recombination with the host genome. The rationale of our plan is outlined herein and our results on the isolation of promoter sequences from a plant DNA virus are summarized.


Cauliflower Mosaic Virus Inverted Repeat Sequence HindIII Fragment Tetracycline Resistance Gene High Plant Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Backman, K., and Ptashne, M., 1978, Maximizing gene expression on a plasmid using recombination in vitro, Cell, 13: 65.PubMedCrossRefGoogle Scholar
  2. Baulcombe, D., and Verma, D.P.S., 1978, Preparation of a complementary DNA for leghaemoglobin and direct demonstration that leghaemoglobin is encoded by the soybean genome, Nuc. Acid Res., 5: 4141.CrossRefGoogle Scholar
  3. Bolivar, F., 1978, Construction and characterization of new cloning vehicles. III Derivatives of plasmid pBR322 carrying unique EcoRI sites for selection of EcoRI generated recombinants, Gene, 4: 121 - 136.PubMedCrossRefGoogle Scholar
  4. Bolivar, F., Rodriquez, R. L., Greene, P. J., Betlach, M. C., Heyneker, H. C., Boyer, H. W., Crosa, J. M., and Falkow, S., 1977b, Construction and characterization of new cloning vehicle, II A multipurpose cloning system. Gene 2: 95: 113.Google Scholar
  5. Bourgin, J. P., 1978, Isolement de mutants a partir de cellules vegetales en culture in vitro, Physio. Veg. 16: 339.Google Scholar
  6. Burrell, C. J., MacKay, P., Greenaway, P. J., Hofschneider, P. H., and Murry, K., 1979, Expression in Escherichia coli of hepatitis B virus DNA sequences cloned in plasmid pBR322, Nature 2479: 43.CrossRefGoogle Scholar
  7. Chaleff, R. S., and Parsons, M. F., 1978a, Direct selection in vitro for herbicide-resistant mutants of Nicotiana tabacum, Proc. Natl. Acad. Sci. USA, 75: 5104.PubMedCrossRefGoogle Scholar
  8. Chaleff, R. S., and Parsons, M. F., 1978b, Isolation of a glycerol- utilizing mutant of Nicotiana tabacum. Genetics 89: 723.PubMedGoogle Scholar
  9. Chilton, M. D., Drummond, M. H., Merlo, D. J., Sciaky, D., Montoya, A. L., Gordon, M. P., and Nester, E. W., 1977, Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigensis. Cell 11: 263.PubMedCrossRefGoogle Scholar
  10. Dhar, R., Subramanian, K. N., Par, J., and Weissman, S. M., 1977, Nucleotide sequence of a fragment of SV40 DNA that contains the origin of DNA replication and specifies the 5 ends of “early” and “late” viral RNA IV, J. Biol. Chem. 252: 368.PubMedGoogle Scholar
  11. Fraser, T. H., and Bruce, B. J., 1978, Chicken ovalbumin is synthesized and secreted by Escherichia coli, Proc. Natl. Acad. Sci. USA 75: 5936.PubMedCrossRefGoogle Scholar
  12. Gannon, F., O’Hare, K., Perrin, F., LePennec, J. P., Benoist, C., Cochet, M., Breathnech, R., Royal, A., Garapin, A., Cami, B., and Chambón, P., 1979, Organization and sequences at the 5′ end of a cloned complete ovalbumin gene. Nature 278: 428.PubMedCrossRefGoogle Scholar
  13. Gerbaud, C., Fournier, P., Blanc, H., Aigle, M., Heslot, H., and Guerineau, M., 1979. High frequency of yeast transformation by plasmids carrying part or entire 2-ym yeast plasmid. Gene 5: 233.PubMedCrossRefGoogle Scholar
  14. Goeddel, D. V., Kleid, D. G., Bolivar, F., Heyneker, H. L., Yansura, D. G., Crea, R., Hirose, T., Kraszewski, A., Itakura, K., and Riggs, A. D., 1979, Expression in Escherichia coli of chemically synthesized genes for human insulin, Proc. Natl. Acad. Sci. USA, 76: 106.CrossRefGoogle Scholar
  15. Hicks, V., and Fink, G. R., 1977, Identification of chromosomal location of yeast DNA from hybrid plasmid pYeleu 10, Nature, 269: 265.PubMedCrossRefGoogle Scholar
  16. Hinnen, A., Hicks, J. B., and Fink, G. R., 1978, Transformation of yeast, Proc. Natl. Acad. Sci. USA 75: 1929.CrossRefGoogle Scholar
  17. Itakura, K., Hirose, T., Crea, R., Riggs, A. D., Heyneker, H. L., Bolivar, F., and Boyer, H. W., 1977, Expression of Escherichia coli of a chemically synthesized gene for the hormone somatostatin, Science 198: 1056.PubMedCrossRefGoogle Scholar
  18. Jendrisak, J. J., and Burgess, R. R., 1975, A new method for the large scale purification of wheat germ RNA polymerase II, Biochemistry 14: 4639.PubMedCrossRefGoogle Scholar
  19. Jones, B. B., Chan, H., Rothstein, S., Wells, R. D., and Reznikoff, W. S., 1977, RNA polymerase binding sites in X plac 5 DNA, Proc. Natl. Acad. Sci. USA 74: 4914.CrossRefGoogle Scholar
  20. Kindle, K. L., and Firtel, R. A., 1978, Identification and analysis of Dictostelium actin genes, a family of moderately repeated genes. Cell 15: 763.PubMedCrossRefGoogle Scholar
  21. Kleckner, N., 1977, Translocatable elements in procaryotes. Cell, 11: 11.PubMedCrossRefGoogle Scholar
  22. Kozak, M., 1978, How do eucaryotic ribosomes select initiation regions in messenger RNA?, Cell 15: 1109.PubMedCrossRefGoogle Scholar
  23. Lurquin, D. F., and Kado, C. I., 1977, E. coli plasmid pBR313 insertion into plant protoplasts and into their nuclei, Molec. gen. Genet, 154: 113.Google Scholar
  24. Malaga, P., 1979, Resistance mutants and their use in genetic manipulation (unpublished manuscript, Inst. Plant Phys., Hungarian Acad. Sci., Szeged, Hungary).Google Scholar
  25. McKnight, T. D., Heyneker, H. L., and Meagher, R. B., 1980, Isolation and characterization of DNA sequences from cauliflower mosaic virus which function as promotors in E. coli,(manuscript in preparation).Google Scholar
  26. McKnight, T. D., and Meagher, R. B., 1979, Isolation and location of potential promotors of cauliflower mosaic virus. Plant Phys. 63:33, Abst. No. 183.Google Scholar
  27. Meagher, R. B., 1977, The development of a molecular cloning system in higher plants. In, Genetic Engineering for Nitrogen Fixation, Ed. by A. Hollaender, et al., Plenum Corp., N.Y., N.Y.Google Scholar
  28. Meagher, R. B., Shepherd, R. J., and Boyer, H. W., 1977a, The structure of cauliflower mosaic virus. 1. A restriction endonuclease map of cauliflower mosaic virus DNA, Virology 80: 362.PubMedCrossRefGoogle Scholar
  29. Meagher, R. B., Tait, R. C., Betlach, M., and Boyer, H. W., 1977b, Protein expression in E. coli mini-cells by recombinant plasmids. Cell 10: 521.PubMedCrossRefGoogle Scholar
  30. Mulligan, R. C., Howard, B. H., and Berg, P., 1979, Synthesis of rabbit 3-globin in cultured monkey kidney cells following infection with SV40 β-globin recombinant genome. Nature 277: 108.PubMedCrossRefGoogle Scholar
  31. Musso, R. E., DiLauro, R., Adhya, S., and de Crombrugghe, B., 1977, Duel control for transcription of the galactose operon by cyclic AMP and its receptor protein at two interspersed promotors, Cell 12: 847.PubMedCrossRefGoogle Scholar
  32. Pribnow, D., 1975, Bacteriophage T7 early promotors: Nucleotide sequences of two RNA polymerase binding sites, J. Mol. Biol. 99: 419.Google Scholar
  33. Poliski, B., Greene, P., Garfin, D. E., McCarthy, B. J., Goodman, H. M., and Boyer, H. W., 1975, The specificity of substrate recognition by the EcoRI restriction endonuclease, Proc. Natl. Acad. Sci. USA, 72: 3310.CrossRefGoogle Scholar
  34. Rodriquez, R. L., West, R. W., Heyneker, H. L., Bolivar, F., and Boyer, H. W., 1980, Characterizating wild-type and mutant promotors of a tetracycline resistance gene in pBR313, (manuscript in preparation).Google Scholar
  35. Shanske, S., Melera, P. W., and Biedler, J.L., 1978, Overproduction of dihydrofolate reductase by antifolate resistant Chinese hamster cells. Cell Biol. 79: 345.Google Scholar
  36. Shaw, W. V., 1971, Comparative enzymology of chloramphenicol resistance, N.Y. Acad. Sci. 182: 234–242.CrossRefGoogle Scholar
  37. Szostack, J. W., and Wu, R., 1979, Insertion of a genetic marker into the ribosomal DNA of yeast, Plasmid, in press.Google Scholar
  38. Summers, A. O., and Silver, S., 1978, Microbial transformations of metals, Ann. Rev. Microbiol. 32: 637.CrossRefGoogle Scholar
  39. Wigler, M., Street, R., Sim, G. K., Wold, B., Pellicer, A., Lacy, E., Maniatis, T., Silverstein, S., and Axel, R., 1979, Transformation of mammalian cells with genes from procaryotes and eucaryotes. Cell 16: 777.PubMedCrossRefGoogle Scholar
  40. Williams, B. G., and Blattner, F. R., 1979, Construction and characterization of the hybrid bacteriophage lambda charon vectors for DNA cloning, J. Virol. 29: 555.PubMedGoogle Scholar
  41. Young, R. A., and Steiz, J. A., 1979, Tandem promotors direct E. coli ribosomal RNA synthesis, Cell 17: 225.PubMedCrossRefGoogle Scholar
  42. Zain, S., Sambrook, J., Roberts, R. J., Keller, W., Fried, M., and Dunn, A. R., 1979, Nucleotide sequence in a copy of adenovirus 2 fiber mRNA, Cell 16: 851.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Richard B. Meagher
    • 1
    • 2
    • 3
  • Thomas D. McKnight
    • 1
    • 3
  1. 1.Department of MicrobiologyUniversity of GeorgiaAthensUSA
  2. 2.Department of BotanyUniversity of GeorgiaAthensUSA
  3. 3.Program in GeneticsUniversity of GeorgiaAthensUSA

Personalised recommendations