Expression of Host Genes During Symbiotic Nitrogen Fixation

  • Desh Pal S. Verma
Part of the NATO Advanced Study Institutes Series book series (volume 29)


Rhizobium-legume association which results in the development of root nodule structures is restricted by a narrow host and bacterial range for each species (Pueppke et al. 1978). This suggests a highly specific interaction between the two organisms. Besides infection, the development of the root nodule is also influenced by both bacterial (Maier and Brill 1976) and plant genes (Holl and LaRue 1976). Mutation in any of these organisms may abort the development of the nodule structure and thus affect the process of symbiotic nitrogen fixation. Although it is apparent that the specific expression of both plant and bacterial genes is required during this process, it is not known how many structural genes of the host or bacteria are involved in the development of the symbiosis necessary for nitrogen fixation in legumes. While some progress has been made on Rhizobium genetics, and the control of nitrogenase enzyme in bacteria, our understanding of the genetic contribution of the host to this process is very limited.


Nitrogen Fixation Root Nodule Symbiotic Nitrogen Fixation Heterologous Hybridization Ineffective Nodule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Appleby, C.A., Nicola, N.A., Hurrell, J.G.R., and Leach, S.J. 1975. Biochemistry 14: 4444–4450.PubMedCrossRefGoogle Scholar
  2. Auger, S., Baulcombe, D., and Verma, D.P.S. 1 979. Biochem. Biophys. Acta (in press).Google Scholar
  3. Baulcombe, D. and Verma, D.P.S. 1978. Nucleic Acids Research 5: 4141–4153.PubMedCrossRefGoogle Scholar
  4. Bergersen, F.J. and Goodchild, D.J. (1973). Aust. Jour. Biol. Sci. 26: 741–756.Google Scholar
  5. Bishop, J.O., Morton, J.G., Rosbash, M., and Richardson, M. 1974. Nature 250: 199–204.PubMedCrossRefGoogle Scholar
  6. Bisseling, T., Van Den Bos, R.C.; Weststrate, M.W., Hakkaart, M.J. and VanKammen, A. (1979). Biochem. Biophys. Acta 562; 515–526.PubMedGoogle Scholar
  7. Caldwell, B.E. 1966. Crop Science 6: 427–428.CrossRefGoogle Scholar
  8. Caldwell, B.E. and Vest, G. 1968. Crop Science 8: 680–682.CrossRefGoogle Scholar
  9. Cutting, J. and Schulman, H.M. 1971. Biochem. Biophys. Acta. 229: 58–62.PubMedGoogle Scholar
  10. Dilworth, M.J. 1969. Biochem. Biophys. Acta 184: 432–441.PubMedCrossRefGoogle Scholar
  11. Ellfolk, N. and Sievers, G. 1971. Acta. Chem. Scand. 25: 3535–3534.CrossRefGoogle Scholar
  12. Goldberg, R.B., Hoschek, G., and Kamalay, J.C. 1978. Cell 14: 123–131.PubMedCrossRefGoogle Scholar
  13. Holl, F.B. and Larue, A. 1976. Proc. 1st Internat. Symp. Nitrogen Fixation. Vol. 2: 391–399.Google Scholar
  14. Hurrell, G.R. and Leach, S.J. 1977. FEBS Lett. 80: 23–26.PubMedCrossRefGoogle Scholar
  15. Hynes, N.E., Groner, B., Sippel, A.E., Nguyen-Hun, M.C., and Schütz, G. 1977. Cell 11: 923–932.PubMedCrossRefGoogle Scholar
  16. Legocki, R. and Verma, D.P.S. 1979. Science (in press).Google Scholar
  17. Legocki, R. and Verma, D.P.S. 1979. Proc. Nat. Acad. Sci. (submitted) Google Scholar
  18. Maier, R.J. and Brill, W.J. 1976. J. Bact. 127: 763–769.PubMedGoogle Scholar
  19. Nicola, N.A. 1975. Ph.D. Thesis. Univ. of Melbourne.Google Scholar
  20. Nutman, P.S. 1956. Biol. Rev. Cambridge Philos. See. 31: 109–151.CrossRefGoogle Scholar
  21. O’Farrell, P.H. 1975. J. Biol. Chem. 10: 4007.Google Scholar
  22. Puepplke, S.G., Bauer, W.D., Ecegstra, K., and Ferguson, A.L. 1978. Plant Physiol. 61: 779.CrossRefGoogle Scholar
  23. Ryffel, G.V. 1976. Eur. J. Biochemistry 62: 417–423.CrossRefGoogle Scholar
  24. Verma, D.P.S., Nash, D.T., and Schulman, H.M. 1974. Nature 251: 74–77.PubMedCrossRefGoogle Scholar
  25. Verma, D.P.S. and Bal, A.K. 1976. Proc. Natl. Acad. Sci. USA, 73: 3843–3847.PubMedCrossRefGoogle Scholar
  26. Verma, D.P.S., V. Kazazian, V. Zogbi and A.K. Bal (1978a). J. Cell Biol. 78: 919–936.PubMedCrossRefGoogle Scholar
  27. Verma, D.P.S., V. Zogbi and A.K. Bal (1978b) Plant Sci. Letters 13: 137–142.CrossRefGoogle Scholar
  28. Verma, D.P.S., Ball, S. Guerin, C.W., and Wanamaker, L. 1979. Biochemistry l8: 476–483.CrossRefGoogle Scholar
  29. Young, B.D., Harrison, P.R., Gilmour, R.S., Birnie, G.D., Hell, A, Humphries, S., and Paul, J. 1974. J. Mol. Biol. 84: 555–568.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Desh Pal S. Verma
    • 1
  1. 1.Department of BiologyMcGill UniversityMontreal, QuebecCanada

Personalised recommendations