InVitro Synthesis, Transport, and Assembly of the Constituent Polypeptides of the Light-Harvesting Chlorophyll a/b Protein Complex

  • Gregory W. Schmidt
  • Sue Bartlett
  • Arthur R. Grossman
  • Anthony R. Cashmore
  • Nam-Hai Chua
Part of the NATO Advanced Study Institutes Series book series (volume 29)


Recent studies have established that transport across chloroplast envelopes of proteins which are synthesized by cytoplasmic ribosomes can occur by a post-translational mechanism (1,2). Dobberstein et al. (3) first discovered that a major chloroplast stromal protein, the small subunit (S) of ribulose 1,5-bisphosphate carboxylase (RuBPCase) is synthesized by free polysomes in the green alga, Chlamydomonas reinhardtii. Moreover, they found that translation of the small subunit messenger RNA in vitro yields a precursor (pS) 4000–5000 daltons larger than the mature protein. Upon incubation with a cell-free Chlamydomonas extract pS can be processed to the mature form and a small peptide fragment designated the transit peptide (4,5). Dobberstein et al. (3) proposed that transport of the RuBPCase small subunit in vivo occurs after it is completely synthesized and that the transit sequence on pS facilitates its post-translational interaction with the chloroplast envelope. This proposed mechanism is fundamentally distinct from the co-translational transport across endoplasmic reticulum membranes of proteins which are synthesized by membrane-bound ribosomes (6,7). Precursor forms of the RuBPCase small subunit also have been found among the translation products of spinach (1), pea (1,2,8) and duckweed (9) mRNA in cell-free systems.


Thylakoid Membrane Wheat Germ Intact Chloroplast Thylakoid Membrane Protein Wheat Germ Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chua, N.-H. and Schmidt, G.W., 1978, Proc. Natl. Acad. Sci. USA 75: 6110.PubMedCrossRefGoogle Scholar
  2. 2.
    Highfield, P.E. and Ellis, R.J., 1978, Nature (London) 271: 420.CrossRefGoogle Scholar
  3. 3.
    Dobberstein, B., Blobel, G., and Chua, N.-H., 1977, Proc. Natl. Acad. Sci. USA 74: 1082.PubMedCrossRefGoogle Scholar
  4. 4.
    Chua, N.-H. and Schmidt, G.W., 1979, J. Cell Biol. 81: 461.PubMedCrossRefGoogle Scholar
  5. 5.
    Schmidt, G.W., Devillers-Thiery, A., Desruisseaux, H., Blobel, G., and Chua, N.-H. submitted to J. Cell Biol.Google Scholar
  6. 6.
    Blobel, G. and Dobberstein, B., 1975, J. Cell Biol. 67: 835.PubMedCrossRefGoogle Scholar
  7. 7.
    Blobel, G. and Dobberstein, B., 1975, J. Cell Biol. 67: 852.PubMedCrossRefGoogle Scholar
  8. 8.
    Cashmore, A.R., Broadhurst, M.K., and Gray, R.E., 1978, Proc. Natl. Acad. Sci. USA 75: 655.PubMedCrossRefGoogle Scholar
  9. 9.
    Tobin, E.M., 1978, Proc. Natl. Acad. Sci. USA 75: 4749.PubMedCrossRefGoogle Scholar
  10. 10.
    Smith, S.M. and Ellis, R.J., 1979, Nature (London) 278: 662.CrossRefGoogle Scholar
  11. 11.
    Anderson, J.M., 1975, Biochim. Biophys. Acta 238: 324.Google Scholar
  12. 12.
    Machold, 0. and Meister, A., 1979, Biochim. Biophys. Acta. 546: 472.CrossRefGoogle Scholar
  13. 13.
    Delepelaire, P. and Chua, N.-H., 1979, Proc. Natl. Acad. Sci. USA 75: 655.Google Scholar
  14. 14.
    Aro, E.-M. and Valanne, N., 1978, Physiol. Plant. 43: 261.CrossRefGoogle Scholar
  15. 15.
    Carter, D.P. and Staehelin, L.A., 1978, J. Cell Biol. 79: 313a.Google Scholar
  16. 16.
    Chua, N.-H. and Bennoun, P., 1975, Proc. Natl. Acad. Sci. USA 72: 2175.PubMedCrossRefGoogle Scholar
  17. 17.
    Laemmli, U.K., 1970, Nature (London) 227: 680.CrossRefGoogle Scholar
  18. 18.
    Süss, K.-H., Schmidt, O., and Machold, O., 1976, Biochim. Biophys. Acta 448: 103.PubMedCrossRefGoogle Scholar
  19. 19.
    Machold, 0. and Aruich, O., 1972, Biochim. Biophys. Acta 281: 103.Google Scholar
  20. 20.
    Cashmore, A.K., 1976, J. Biol. Chem. 251: 2848.PubMedGoogle Scholar
  21. 21.
    Morgenthaler, J.-J., Marden, M.P.F., and Price, C.A., 1975, Arch. Biochem. Biophys. 168: 289.PubMedCrossRefGoogle Scholar
  22. 22.
    Bonner, W.M. and Laskey, R.A., 1974, Eur. J. Biochem. 46: 83.PubMedCrossRefGoogle Scholar
  23. 23.
    Chua, N.-H., Matlin, K., and Bennoun, P., 1975, J. Cell Biol. 67: 361.PubMedCrossRefGoogle Scholar
  24. 24.
    Yu, J. and Steck, T.L., 1975, J. Biol. Chem. 250: 9170.PubMedGoogle Scholar
  25. 25.
    Chua, N.-H. and Blomberg, F., 1979, J. Biol. Chem. 254: 215.PubMedGoogle Scholar
  26. 26.
    Pelham, H.R.B, and Jackson, R.J., 1976, Eur. J. Biochem. 67: 247.PubMedCrossRefGoogle Scholar
  27. 27.
    Roman, R., Brooker, J.D., Seal, S.N., and Marcus, A., 1976, Nature (London) 260: 359.CrossRefGoogle Scholar
  28. 28.
    Rogg, H., Wehrli, W., and Staehelin, M., 1969, Biochim. Biophys. Acta 195: 13.PubMedGoogle Scholar
  29. 29.
    Apel, K. and Kloppstech, K., 1978, Eur. J. Biochem. 85: 581.PubMedCrossRefGoogle Scholar
  30. 30.
    Grossman, A.R., Bartlett, S.G., Schmidt, G.W., and Chua, N.-H., 1979, Annais N.Y. Acad. Sci. In Press.Google Scholar
  31. 31.
    Henriques, F. and Park, R., 1976, Proc. Natl. Acad. Sci. USA 73: 4560.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Gregory W. Schmidt
    • 1
  • Sue Bartlett
    • 1
  • Arthur R. Grossman
    • 1
  • Anthony R. Cashmore
    • 1
  • Nam-Hai Chua
    • 1
  1. 1.The Rockefeller UniversityNew YorkUSA

Personalised recommendations