Skip to main content

The Role of S-Adenosylhomocysteine and S-Adenosylhomocysteine Hydrolase in the Control of Biological Methylations

  • Chapter
Natural Sulfur Compounds

Abstract

S-Adenosylhomocysteine (AdoHcy) (Fig. 1) was first identified as one of the products of the reactions that utilize S-adenosylmethionine (AdoMet) as a methyl donor by Scarano and Cantoni1 in 1954. Over the last 25 years, and especially in the last three or four years, AdoHcy has attracted increasing attention because it has become well established that AdoHcy is a competitive inhibitor of many, if not most, of the reactions in which AdoMet participates 2–13.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. L. Cantoni and E. Scarano, The formation of S-adenosylhomo-cysteine in enzymatic transmethylation reactions, J. Amer. Chem. Soc. 76: 4744 (1954).

    Article  CAS  Google Scholar 

  2. A. E. Chung and J. H. Law, Biosynthesis of cyclopropane compounds. VI. Product inhibition of cyclopropane fatty acid synthetase by S-adenosylhomocysteine and reversal of inhibition by a hydrolytic enzyme, Biochemistry 3: 1989 (1964).

    Google Scholar 

  3. J. Hurwitz, M. Gold and M. Anders, The enzymatic methylation of ribonucleic acid and deoxyribonucleic acid. IV. The properties of the soluble ribonucleic acid-methylating enzymes, Biol. Chem. 239: 3474 (1964).

    CAS  Google Scholar 

  4. S. K. Shapiro, A. Almenas and J. F. Thomson, Biosynthesis of methionine in Saooharomyoes oerevisiae. Kinetics and mechanism of reaction of S-adenosylmethionine:homocysteine methyl-transferase, J. Biol. Chem. 240: 2512 (1965).

    PubMed  CAS  Google Scholar 

  5. V. Zappia, C. R. Zydek-Cwick and F. Schlenk, The specificity of S-adenosylmethionine derivatives in methyl transfer reactions, J. Biol. Chem. 244: 4499 (1969).

    PubMed  CAS  Google Scholar 

  6. Y. Akamatsu and J. H. Law, The enzymatic synthesis of fatty acid methyl esters by carboxyl group alkylation, Biol. Chem. 245: 709 (1970).

    CAS  Google Scholar 

  7. T. Deguchi and J. Barchas, Inhibition of transmethylations of biogenic amines by S-adenosylhomocysteine, J. Biol. Chem. 246: 3175 (1971).

    PubMed  CAS  Google Scholar 

  8. K. R. Swiatek, L. N. Simon and K.-L. Chao, Nicotinamide methy1-transferase and S-adenosylmethionine:5’-methylthioadenosine hydrolase. Control of transfer ribonucleic acid methylation, Biochemistry 12: 4670 (1973).

    Article  PubMed  CAS  Google Scholar 

  9. S. J. Kerr, Regulation of tRNA methyltransferase activity, in: “The Biochemistry of Adenosylmethionine,” F. Salvatore, E. Borek, V. Zappia, H. G. Williams-Ashman and F. Schlenk, eds., University Press, New York (1977).

    Google Scholar 

  10. C. S. G. Pugh, R. T. Borchardt and H. 0. Stone, Inhibition of Newcastle disease virion messenger RNA (guanine-7-)-methyl-transferase by analogues of S-adenosylhomocysteine, Biochemistry, 16: 3928 (1977).

    Article  PubMed  CAS  Google Scholar 

  11. J. K. Coward, D. L. Bussolotti and C.-D. Chang, Analogs of S-adenosylhomocysteine as potential inhibitors of biological methylation. Inhibition of several methylases by S-tuber-cidinylhomocysteine, J. Med. Chem. 17: 1286 (1974).

    Article  PubMed  CAS  Google Scholar 

  12. C. Kutzbach and E. L. R. Stokstad, Mammalian methylenetetrahydro-folate reductase. Partial purification, properties, and inhibition by S-adenosylmethionine, Biochim. Biophys. Acta 250: 459 (1971).

    CAS  Google Scholar 

  13. G. T. Burke, J. H. Mangum and J. D. Brodie, Mechanism of mammalian cobalamin-dependent methionine biosynthesis, Biochemistry 10: 3079 (1971).

    Article  PubMed  CAS  Google Scholar 

  14. S. Nishimura, Characterization and enzymatic synthesis of 3-(3-amino-3-carboxypropyl)-uridine in transfer RNA: transfer of the 3-amino-3-carboxypropyl group from adenosylmethionine, in: “The Biochemistry of Adenosylmethionine,” F. Salvatore, E. Borek, V. Zappia, H. G. Williams-Ashman and v. Schlenk, eds., University Press, New York (1977).

    Google Scholar 

  15. G. L. Stoner and M. A. Eisenberg, Purification and properties of 7,8-diaminopelargonic acid aminotransferase. An enzyme in the biotin biosynthetic pathway, J. Biol. Chem. 250: 4029 (1975).

    PubMed  CAS  Google Scholar 

  16. C. W. Tabor and H. Tabor, 1,4-Diaminobutane (putrescine), spermidine, and spermine, Ann. Rev. Biochem. 45: 285 (1976).

    Article  PubMed  CAS  Google Scholar 

  17. S. K. Shapiro and A. N. Mather, The enzymatic decomposition of S-adenosyl-L-methionine, J. Biol. Chem. 233: 631 (1958).

    PubMed  CAS  Google Scholar 

  18. S. H. Mudd, Enzymatic cleavage of S-adenosylmethionine, J. Biol.Chem. 234: 87 (1959).

    PubMed  CAS  Google Scholar 

  19. M. Gold, R. Hausman, U. Maitra and J. Hurwitz, The enzymatic methylation of RNA and DNA. VIII. Effects of bacteriophage infection on the activity of the methylating enzymes, Proc. Nat. Acad. Sci. U. S. A. 52: 292 (1964).

    Article  CAS  Google Scholar 

  20. C. Baxter and C. J. Coscia, In vitro synthesis of spermidine in the higher plant, Vinca rosea, Biochem. Biophys. Res. Commun. 54:147 (1973).

    Google Scholar 

  21. K. R. Swiatek, L. N. Simon and K.-L. Chao, Nicotinamide methyl-transferase and S-adenosylmethionine:5’-methylthioadenosine hydrolase. Control of transfer ribonucleic acid methylation, Biochemistry 12: 4670 (1973).

    Article  PubMed  CAS  Google Scholar 

  22. G. L. Cantoni, S-Adenosylmethionine: present status and future perspectives, in: The Biochemistry of Adenosylmethionine, F. Salvatore, E. Borek, V. Zappia, H. G. Williams-Ashman and F. Schlenk, eds., University Press, New York (1977).

    Google Scholar 

  23. G. de la Haba and G. L. Cantoni, The enzymatic synthesis of S-adenosyl-L-homocysteine from adenosine and homocysteine, J. Biol. Chem. 234: 603 (1959).

    Google Scholar 

  24. H. H. Richards, P. K. Chiang and G. L. Cantoni, Adenosylhomocysteine hydrolase: crystallization of the purified enzyme and its properties, J. Biol. Chem. 253: 4476 (1978).

    PubMed  CAS  Google Scholar 

  25. J. L. Palmer and R. H. Abeles, The mechanism of action of S-adenosylhomocysteinase, J. Biol. Chem. 254: 1217 (1979).

    PubMed  CAS  Google Scholar 

  26. A. Guranowski and J. Pawelkiewicz, Adenosylhomocysteinase from yellow lupin seeds: purification and properties, Eur. J. Biochem. 80: 517 (1977).

    Article  PubMed  CAS  Google Scholar 

  27. R. A. Schatz, C. R. Vunnam and 0. Z. Sellinger, S-Adenosyl-L-homocysteine hydrolase from rat brain: purification and some properties, in:“Transmethylation,” E. Usdin, R. T. Borchardt and C. R. Creveling, eds., Elsevier, New York (1979).

    Google Scholar 

  28. A. Guranowski, P. K. Chiang and G. L. Cantoni, to be published.

    Google Scholar 

  29. R. T. Borchardt, Synthesis and biological activity of analogs of adenosylhomocysteine as inhibitors of methyltransferases, in: “The Biochemistry of Adenosylmethionine,” F. Salvatore, E. Borek, V. Zappia, H. G. Williams-Ashman and F. Schlenk, eds., University Press, New York (1977).

    Google Scholar 

  30. T. 0. Eloranta, Tissue distribution of S-adenosylmethionine and S-adenosylhomocysteine in the rat. Effect of age, sex and methionine administration on the metabolism of S-adenosyl- methionine, S-adenosylhomocysteine and polyamines, Biochem. J. 166: 521 (1977).

    Google Scholar 

  31. C. Walsh, Chemical approaches to the study of enzymes catalyzing redox transformations, Ann. Rev. Biochem. 47: 881 (1978).

    Article  PubMed  CAS  Google Scholar 

  32. A. Guranowski, P. K. Chiang and G. L. Cantoni, unpublished results.

    Google Scholar 

  33. R. M. Hoffman and R. W. Erbe, High in vitro rates of methionine biosynthesis in transformed human and malignant rat cells auxotrophic for methionine, Proc. Nat. Acad. Sci. U. S. A. 73: 1523 (1976).

    Google Scholar 

  34. R. M. Hoffman and R. W. Erbe, High in vitro rates of methionine biosynthesis in transformed human and malignant rat cells auxotrophic for methionine, Proc. Nat. Acad. Sci. U. S. A. 73: 1523 (1976).

    Article  CAS  Google Scholar 

  35. P. L. Chello and J. R. Bertino, Dependence of 5-methyltetra-hydrofolate utilization by L51789 murine leukemia cells in vitro on the presence of hydroxycobalamin and transcobalamin II, Cancer Res. 33: 1898 (1973).

    PubMed  CAS  Google Scholar 

  36. M. J. Wilson and L. A. Poirier, An increased requirement for methionine by transformed rat liver epithelial cells in vitro, Exper. Cell Res. 111: 397 (1978).

    Article  CAS  Google Scholar 

  37. N. M. Kredich, M. S. Hershfield and J. M. Johnston, Role of adenosine metabolism in transmethylation, in:“Transmethylation,” E. Usdin, R. T. Borchardt and C. R. Creveling, eds., Elsevier, New York (1979).

    Google Scholar 

  38. I. H. Fox and W. N. Kelley, The role of adenosine and 2’-deoxy-adenosine in mammalian cells, Ann. Rev. Biochem. 47:655 (1978),

    Google Scholar 

  39. J. A. Duerre, A hydrolytic nucleosidase acting on S-adenosyl-homocysteine and on 5f-methylthioadenosine, Biol. Chem. 237: 3737 (1962).

    CAS  Google Scholar 

  40. C. H. Miller and J. A. Duerre, S-Ribosylhomocysteine cleavage enzyme from Escherichia coli, J. Biol. Chem. 243: 92 (1968).

    PubMed  CAS  Google Scholar 

  41. J. A. Duerre and R. D. Walker, Metabolism of adenosylhomocysteine, in: “fThe Biochemistry of Adenosylmethionine,” F. Salvatore, E. Borek, V. Zappia, H. G. Williams-Ashman and F. Schlenk, eds., University Press, New York (1977).

    Google Scholar 

  42. P. K. Chiang, H. H. Richards and G. L. Cantoni, S-Adenosyl-L-homocysteine hydrolase: analogs of S-adenosyl-L-homocysteine as potential inhibitors, Mol. Pharmacol. 13: 939 (1977).

    PubMed  CAS  Google Scholar 

  43. M. Ikehara and T. Fukui, Studies of nucelosides and nucleotides. LVIII. Deamination of adenosine analogs with calf intestine adenosine deaminase, Biochim. Biophys. Acta 338: 512 (1974).

    CAS  Google Scholar 

  44. R. L. Miller, D. L. Adamczyk, W. H. Miller, G. W. Koszalka, J. L. Rideout, L. M. Beacham, III, E. Y. Chao, J. J. Haggerty, T. A. Krenitsky and G. B. Elion, Adenosine kinase from rabbit liver. II. Substrate and inhibitor specificity, J. Biol. Chem. 254: 2346 (1979).

    PubMed  CAS  Google Scholar 

  45. P. K. Chiang and G. L. Cantoni, Perturbation of biochemical transmethylations by 3-deazaadenosine in vivo, Biochem. Pharmac., in press.

    Google Scholar 

  46. T. P. Zimmerman, G. Wolberg and G. S. Duncan, Inhibition of lymphocyte-mediated cytolysis by 3-deazaadenosine: evidence for a methylation reaction essential to cytolysis, Proc. Nat. Acad. Sci. U. S. A. 75: 6220 (1978).

    Article  CAS  Google Scholar 

  47. E. J. Leonard, A. Skeel, P. K. Chiang and G. L. Cantoni, The action of the adenosylhomocysteine hydrolase inhibitor, 3- deazaadenosine, on phagocytic function of mouse macrophages and human monocytes, Biochem. Biophys. Res. Commun. 84: 102 (1978).

    Article  PubMed  CAS  Google Scholar 

  48. P. K. Chiang, K. Venkatasubramanian, H. H. Richards, G. L.Cantoni and E. Schiffmann, Adenosylhomocysteine hydrolase and chemotaxis, in:“Transmethylation,” Elsevier, New York (1979).

    Google Scholar 

  49. J. M. Thompson, P. K. Chiang, R. R. Ruffolo, Jr., G. L. Cantoni and M. Nirenberg, Methyltransferases are involved in neurotransmission, Society of Neuroscience Meeting, abstract (1979).

    Google Scholar 

  50. J. P. Bader, N. R. Brown, P. K. Chiang and O. L. Cantoni, 3-Deazaadenosine an inhibitor of adenosylhomocysteine hydrolase inhibits reproduction of Rous sarcoma virus and transformation of chick embryo cells, Virology 89: 494 (1978).

    Article  PubMed  CAS  Google Scholar 

  51. P. K. Chiang, G. L. Cantoni, J. P. Bader, W. M. Shannon, H. J. Thomas and J. A. Montgomery, Adenosylhomocysteine hydrolase inhibitors: synthesis of 5,-deoxy-5l-(isobutylthio)-3-deaza- adenosine and its effect on Rous sarcoma virus and Gross murine leukemia virus, Biochem. Biophys. Res. Commun. 82: 417 (1978).

    Article  PubMed  CAS  Google Scholar 

  52. J. M. Bishop, Retroviruses, Ann. Rev. Biochem. 47: 35 (1978).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Cantoni, G.L., Chiang, P.K. (1980). The Role of S-Adenosylhomocysteine and S-Adenosylhomocysteine Hydrolase in the Control of Biological Methylations. In: Cavallini, D., Gaull, G.E., Zappia, V. (eds) Natural Sulfur Compounds. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3045-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3045-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3047-9

  • Online ISBN: 978-1-4613-3045-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics