The Role of S-Adenosylhomocysteine and S-Adenosylhomocysteine Hydrolase in the Control of Biological Methylations

  • Giulio L. Cantoni
  • Peter K. Chiang

Abstract

S-Adenosylhomocysteine (AdoHcy) (Fig. 1) was first identified as one of the products of the reactions that utilize S-adenosylmethionine (AdoMet) as a methyl donor by Scarano and Cantoni1 in 1954. Over the last 25 years, and especially in the last three or four years, AdoHcy has attracted increasing attention because it has become well established that AdoHcy is a competitive inhibitor of many, if not most, of the reactions in which AdoMet participates 2–13.

Keywords

Cysteine NADH Choline Adenine Butyrate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. L. Cantoni and E. Scarano, The formation of S-adenosylhomo-cysteine in enzymatic transmethylation reactions, J. Amer. Chem. Soc. 76: 4744 (1954).CrossRefGoogle Scholar
  2. 2.
    A. E. Chung and J. H. Law, Biosynthesis of cyclopropane compounds. VI. Product inhibition of cyclopropane fatty acid synthetase by S-adenosylhomocysteine and reversal of inhibition by a hydrolytic enzyme, Biochemistry 3: 1989 (1964).Google Scholar
  3. 3.
    J. Hurwitz, M. Gold and M. Anders, The enzymatic methylation of ribonucleic acid and deoxyribonucleic acid. IV. The properties of the soluble ribonucleic acid-methylating enzymes, Biol. Chem. 239: 3474 (1964).Google Scholar
  4. 4.
    S. K. Shapiro, A. Almenas and J. F. Thomson, Biosynthesis of methionine in Saooharomyoes oerevisiae. Kinetics and mechanism of reaction of S-adenosylmethionine:homocysteine methyl-transferase, J. Biol. Chem. 240: 2512 (1965).PubMedGoogle Scholar
  5. 5.
    V. Zappia, C. R. Zydek-Cwick and F. Schlenk, The specificity of S-adenosylmethionine derivatives in methyl transfer reactions, J. Biol. Chem. 244: 4499 (1969).PubMedGoogle Scholar
  6. 6.
    Y. Akamatsu and J. H. Law, The enzymatic synthesis of fatty acid methyl esters by carboxyl group alkylation, Biol. Chem. 245: 709 (1970).Google Scholar
  7. 7.
    T. Deguchi and J. Barchas, Inhibition of transmethylations of biogenic amines by S-adenosylhomocysteine, J. Biol. Chem. 246: 3175 (1971).PubMedGoogle Scholar
  8. 8.
    K. R. Swiatek, L. N. Simon and K.-L. Chao, Nicotinamide methy1-transferase and S-adenosylmethionine:5’-methylthioadenosine hydrolase. Control of transfer ribonucleic acid methylation, Biochemistry 12: 4670 (1973).PubMedCrossRefGoogle Scholar
  9. 9.
    S. J. Kerr, Regulation of tRNA methyltransferase activity, in: “The Biochemistry of Adenosylmethionine,” F. Salvatore, E. Borek, V. Zappia, H. G. Williams-Ashman and F. Schlenk, eds., University Press, New York (1977).Google Scholar
  10. 10.
    C. S. G. Pugh, R. T. Borchardt and H. 0. Stone, Inhibition of Newcastle disease virion messenger RNA (guanine-7-)-methyl-transferase by analogues of S-adenosylhomocysteine, Biochemistry, 16: 3928 (1977).PubMedCrossRefGoogle Scholar
  11. 11.
    J. K. Coward, D. L. Bussolotti and C.-D. Chang, Analogs of S-adenosylhomocysteine as potential inhibitors of biological methylation. Inhibition of several methylases by S-tuber-cidinylhomocysteine, J. Med. Chem. 17: 1286 (1974).PubMedCrossRefGoogle Scholar
  12. 12.
    C. Kutzbach and E. L. R. Stokstad, Mammalian methylenetetrahydro-folate reductase. Partial purification, properties, and inhibition by S-adenosylmethionine, Biochim. Biophys. Acta 250: 459 (1971).Google Scholar
  13. 13.
    G. T. Burke, J. H. Mangum and J. D. Brodie, Mechanism of mammalian cobalamin-dependent methionine biosynthesis, Biochemistry 10: 3079 (1971).PubMedCrossRefGoogle Scholar
  14. 14.
    S. Nishimura, Characterization and enzymatic synthesis of 3-(3-amino-3-carboxypropyl)-uridine in transfer RNA: transfer of the 3-amino-3-carboxypropyl group from adenosylmethionine, in: “The Biochemistry of Adenosylmethionine,” F. Salvatore, E. Borek, V. Zappia, H. G. Williams-Ashman and v. Schlenk, eds., University Press, New York (1977).Google Scholar
  15. 15.
    G. L. Stoner and M. A. Eisenberg, Purification and properties of 7,8-diaminopelargonic acid aminotransferase. An enzyme in the biotin biosynthetic pathway, J. Biol. Chem. 250: 4029 (1975).PubMedGoogle Scholar
  16. 16.
    C. W. Tabor and H. Tabor, 1,4-Diaminobutane (putrescine), spermidine, and spermine, Ann. Rev. Biochem. 45: 285 (1976).PubMedCrossRefGoogle Scholar
  17. 17.
    S. K. Shapiro and A. N. Mather, The enzymatic decomposition of S-adenosyl-L-methionine, J. Biol. Chem. 233: 631 (1958).PubMedGoogle Scholar
  18. 18.
    S. H. Mudd, Enzymatic cleavage of S-adenosylmethionine, J. Biol.Chem. 234: 87 (1959).PubMedGoogle Scholar
  19. 19.
    M. Gold, R. Hausman, U. Maitra and J. Hurwitz, The enzymatic methylation of RNA and DNA. VIII. Effects of bacteriophage infection on the activity of the methylating enzymes, Proc. Nat. Acad. Sci. U. S. A. 52: 292 (1964).CrossRefGoogle Scholar
  20. 20.
    C. Baxter and C. J. Coscia, In vitro synthesis of spermidine in the higher plant, Vinca rosea, Biochem. Biophys. Res. Commun. 54:147 (1973).Google Scholar
  21. 21.
    K. R. Swiatek, L. N. Simon and K.-L. Chao, Nicotinamide methyl-transferase and S-adenosylmethionine:5’-methylthioadenosine hydrolase. Control of transfer ribonucleic acid methylation, Biochemistry 12: 4670 (1973).PubMedCrossRefGoogle Scholar
  22. 22.
    G. L. Cantoni, S-Adenosylmethionine: present status and future perspectives, in: The Biochemistry of Adenosylmethionine, F. Salvatore, E. Borek, V. Zappia, H. G. Williams-Ashman and F. Schlenk, eds., University Press, New York (1977).Google Scholar
  23. 23.
    G. de la Haba and G. L. Cantoni, The enzymatic synthesis of S-adenosyl-L-homocysteine from adenosine and homocysteine, J. Biol. Chem. 234: 603 (1959).Google Scholar
  24. 24.
    H. H. Richards, P. K. Chiang and G. L. Cantoni, Adenosylhomocysteine hydrolase: crystallization of the purified enzyme and its properties, J. Biol. Chem. 253: 4476 (1978).PubMedGoogle Scholar
  25. 25.
    J. L. Palmer and R. H. Abeles, The mechanism of action of S-adenosylhomocysteinase, J. Biol. Chem. 254: 1217 (1979).PubMedGoogle Scholar
  26. 26.
    A. Guranowski and J. Pawelkiewicz, Adenosylhomocysteinase from yellow lupin seeds: purification and properties, Eur. J. Biochem. 80: 517 (1977).PubMedCrossRefGoogle Scholar
  27. 27.
    R. A. Schatz, C. R. Vunnam and 0. Z. Sellinger, S-Adenosyl-L-homocysteine hydrolase from rat brain: purification and some properties, in:“Transmethylation,” E. Usdin, R. T. Borchardt and C. R. Creveling, eds., Elsevier, New York (1979).Google Scholar
  28. 28.
    A. Guranowski, P. K. Chiang and G. L. Cantoni, to be published.Google Scholar
  29. 29.
    R. T. Borchardt, Synthesis and biological activity of analogs of adenosylhomocysteine as inhibitors of methyltransferases, in: “The Biochemistry of Adenosylmethionine,” F. Salvatore, E. Borek, V. Zappia, H. G. Williams-Ashman and F. Schlenk, eds., University Press, New York (1977).Google Scholar
  30. 30.
    T. 0. Eloranta, Tissue distribution of S-adenosylmethionine and S-adenosylhomocysteine in the rat. Effect of age, sex and methionine administration on the metabolism of S-adenosyl- methionine, S-adenosylhomocysteine and polyamines, Biochem. J. 166: 521 (1977).Google Scholar
  31. 31.
    C. Walsh, Chemical approaches to the study of enzymes catalyzing redox transformations, Ann. Rev. Biochem. 47: 881 (1978).PubMedCrossRefGoogle Scholar
  32. 32.
    A. Guranowski, P. K. Chiang and G. L. Cantoni, unpublished results.Google Scholar
  33. 33.
    R. M. Hoffman and R. W. Erbe, High in vitro rates of methionine biosynthesis in transformed human and malignant rat cells auxotrophic for methionine, Proc. Nat. Acad. Sci. U. S. A. 73: 1523 (1976).Google Scholar
  34. 34.
    R. M. Hoffman and R. W. Erbe, High in vitro rates of methionine biosynthesis in transformed human and malignant rat cells auxotrophic for methionine, Proc. Nat. Acad. Sci. U. S. A. 73: 1523 (1976).CrossRefGoogle Scholar
  35. 35.
    P. L. Chello and J. R. Bertino, Dependence of 5-methyltetra-hydrofolate utilization by L51789 murine leukemia cells in vitro on the presence of hydroxycobalamin and transcobalamin II, Cancer Res. 33: 1898 (1973).PubMedGoogle Scholar
  36. 36.
    M. J. Wilson and L. A. Poirier, An increased requirement for methionine by transformed rat liver epithelial cells in vitro, Exper. Cell Res. 111: 397 (1978).CrossRefGoogle Scholar
  37. 37.
    N. M. Kredich, M. S. Hershfield and J. M. Johnston, Role of adenosine metabolism in transmethylation, in:“Transmethylation,” E. Usdin, R. T. Borchardt and C. R. Creveling, eds., Elsevier, New York (1979).Google Scholar
  38. 38.
    I. H. Fox and W. N. Kelley, The role of adenosine and 2’-deoxy-adenosine in mammalian cells, Ann. Rev. Biochem. 47:655 (1978),Google Scholar
  39. 39.
    J. A. Duerre, A hydrolytic nucleosidase acting on S-adenosyl-homocysteine and on 5f-methylthioadenosine, Biol. Chem. 237: 3737 (1962).Google Scholar
  40. 40.
    C. H. Miller and J. A. Duerre, S-Ribosylhomocysteine cleavage enzyme from Escherichia coli, J. Biol. Chem. 243: 92 (1968).PubMedGoogle Scholar
  41. 41.
    J. A. Duerre and R. D. Walker, Metabolism of adenosylhomocysteine, in: “fThe Biochemistry of Adenosylmethionine,” F. Salvatore, E. Borek, V. Zappia, H. G. Williams-Ashman and F. Schlenk, eds., University Press, New York (1977).Google Scholar
  42. 42.
    P. K. Chiang, H. H. Richards and G. L. Cantoni, S-Adenosyl-L-homocysteine hydrolase: analogs of S-adenosyl-L-homocysteine as potential inhibitors, Mol. Pharmacol. 13: 939 (1977).PubMedGoogle Scholar
  43. 43.
    M. Ikehara and T. Fukui, Studies of nucelosides and nucleotides. LVIII. Deamination of adenosine analogs with calf intestine adenosine deaminase, Biochim. Biophys. Acta 338: 512 (1974).Google Scholar
  44. 44.
    R. L. Miller, D. L. Adamczyk, W. H. Miller, G. W. Koszalka, J. L. Rideout, L. M. Beacham, III, E. Y. Chao, J. J. Haggerty, T. A. Krenitsky and G. B. Elion, Adenosine kinase from rabbit liver. II. Substrate and inhibitor specificity, J. Biol. Chem. 254: 2346 (1979).PubMedGoogle Scholar
  45. 45.
    P. K. Chiang and G. L. Cantoni, Perturbation of biochemical transmethylations by 3-deazaadenosine in vivo, Biochem. Pharmac., in press.Google Scholar
  46. 46.
    T. P. Zimmerman, G. Wolberg and G. S. Duncan, Inhibition of lymphocyte-mediated cytolysis by 3-deazaadenosine: evidence for a methylation reaction essential to cytolysis, Proc. Nat. Acad. Sci. U. S. A. 75: 6220 (1978).CrossRefGoogle Scholar
  47. 47.
    E. J. Leonard, A. Skeel, P. K. Chiang and G. L. Cantoni, The action of the adenosylhomocysteine hydrolase inhibitor, 3- deazaadenosine, on phagocytic function of mouse macrophages and human monocytes, Biochem. Biophys. Res. Commun. 84: 102 (1978).PubMedCrossRefGoogle Scholar
  48. 48.
    P. K. Chiang, K. Venkatasubramanian, H. H. Richards, G. L.Cantoni and E. Schiffmann, Adenosylhomocysteine hydrolase and chemotaxis, in:“Transmethylation,” Elsevier, New York (1979).Google Scholar
  49. 49.
    J. M. Thompson, P. K. Chiang, R. R. Ruffolo, Jr., G. L. Cantoni and M. Nirenberg, Methyltransferases are involved in neurotransmission, Society of Neuroscience Meeting, abstract (1979).Google Scholar
  50. 50.
    J. P. Bader, N. R. Brown, P. K. Chiang and O. L. Cantoni, 3-Deazaadenosine an inhibitor of adenosylhomocysteine hydrolase inhibits reproduction of Rous sarcoma virus and transformation of chick embryo cells, Virology 89: 494 (1978).PubMedCrossRefGoogle Scholar
  51. 51.
    P. K. Chiang, G. L. Cantoni, J. P. Bader, W. M. Shannon, H. J. Thomas and J. A. Montgomery, Adenosylhomocysteine hydrolase inhibitors: synthesis of 5,-deoxy-5l-(isobutylthio)-3-deaza- adenosine and its effect on Rous sarcoma virus and Gross murine leukemia virus, Biochem. Biophys. Res. Commun. 82: 417 (1978).PubMedCrossRefGoogle Scholar
  52. 52.
    J. M. Bishop, Retroviruses, Ann. Rev. Biochem. 47: 35 (1978).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Giulio L. Cantoni
    • 1
  • Peter K. Chiang
    • 1
  1. 1.Laboratory of General and Comparative BiochemistryNational Institute of Mental HealthBethesdaUSA

Personalised recommendations