Biosaline Research: The Use of Photosynthetic Marine Organisms in Food and Feed Production

  • Akira Mitsui
Part of the Environmental Science Research book series (ESRH, volume 14)

Abstract

All food production ultimately depends on photosynthetic organisms and through them, upon solar energy. Since ancient times man has primarily tapped solar energy through land agriculture. Agricultural production is limited by the availability of arable land, fresh water, light and nutrients.

Keywords

Fermentation Phosphorus Carbohydrate Enzymatic Degradation Folic Acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersen, K., K. T. Shanmugam, R. C. Valentine. 1977. Genetic derepression of nitrogenase-mediated H2 evolution by Klebsiella pneumoniae, p. 339–346. In: Biological solar energy conversion, (ed. by Mitsui, A. et al.) Academic Press, New York.Google Scholar
  2. 2.
    Arasaki, T. and N. Mino. 1973. Alkali-soluble proteins in marine algae. Eiyo To Shokuryo 26 (2): 129–133.CrossRefGoogle Scholar
  3. 3.
    Bardach, J. E., J. H. Ryther, W. O. McLarney. 1972. Aquaculture. Wiley Interscience, New York.Google Scholar
  4. 4.
    Bassham, J. A. 1977. Synthesis of organic compounds from carbon dioxide in land plants, p. 151–165. In: Biological solar energy conversion, (ed. by Mitsui, A. et al.) Academic Press, New York.Google Scholar
  5. 5.
    Bell, F. W., E. R. Canterbery. 1976. Aquaculture for the developing countries. Ballinger Publ. Co., Cambridge, MA.Google Scholar
  6. 6.
    Ben-Amotz, A., M. Avron. 1973. The role of glycerol in the osmotic regulation of the halophilic alga Dunaliella parva. Plant Physiol. 51: 875–878.CrossRefGoogle Scholar
  7. 7.
    Black, Jr., C. C. 1973. Photosynthetic carbon fixation in relation to net CO2 uptake. Ann. Rev. Plant Physiol. 24: 253–286.CrossRefGoogle Scholar
  8. 8.
    Borowitzka, L. J., A. D. Brown. 1974. The salt relation of marine and halophilic species of the unicellular green alga Dunaliella. The role of glycerol as a compatible solute. Arch. Microbiol. 96: 37–52.CrossRefGoogle Scholar
  9. 9.
    Brown, A. W. A., T. C. Byerly, M. Gibbs, A. San Pietro. (eds.) 1975. Crop Productivity-Research Imperatives. Michigan Agri. Res. Sta. and C. F. Kettering Res. Fdn. and NSF-RANNGoogle Scholar
  10. 10.
    Butler, W. L. 1973. p. 68–69. In: Proc. of the workshop on biosolar conversion (ed. by Gibbs, M. et al.) NSF-RANN.Google Scholar
  11. 11.
    Calvin, M. 1976. Photosynthesis as a resource for energy and materials. Photochem. Photobiol. 23: 425–444.CrossRefGoogle Scholar
  12. 12.
    Carlson, P. S., J. C. Polacco. 1975. Plant cell cultures: genetic aspects of crop improvement. Science 188: 622–625.ADSCrossRefGoogle Scholar
  13. 13.
    Cooper, J. P. (ed.). 1973. Photosynthesis and productivity in different environments. Cambridge Univ. Press, Cambridge, MA.Google Scholar
  14. 14.
    Daigo, K. 1959. Studies on the constituents of Chondria armata. J. Pharm. Soc. Japan 79: 350–360.Google Scholar
  15. 15.
    Durand-Chastel, H., M. D. Silve. 1977. The Spirulina algae. Euro. Sem. Biol. Solar Energy Conversion System., Grenoble-Autrans p. 1–15.Google Scholar
  16. 16.
    Ehrlich, P. R. and A.H. Ehrlich. 1970. Population resources environment. W. H. Freeman and Co., San Francisco.Google Scholar
  17. 17.
    FAO. 1975a. Yearbook of fisheries statistics. Food and Agriculture Organization, Rome. vol. 40.Google Scholar
  18. 18.
    FAO. 1975b. The state of food and agriculture 1974. Food and Agriculture Organization, Rome.Google Scholar
  19. 19.
    FAO. 1976. Culture of algae and seaweeds. Food and Agriculture Organization, Rome. Fish. Rep. 188: 34–35.Google Scholar
  20. 20.
    Fowden, L. 1962. Amino acids and proteins, p. 189–209. In: Physiology and biochemistry of algae (ed. by Lewin, R.A.) Academic Press, New York.Google Scholar
  21. 21.
    Fujimaki, M., S. Arai, M. Yamashita. 1975. Food protein improvement and plastin reaction. ( In Japanese) Protein, Nucleic Acid and Enzyem 20: 927–935.Google Scholar
  22. 22.
    Gest, H., M.D. Kamen. 1949. Photoproduction of molecular hydrogen by Rhodospirillum rubrum. Science 109: 558.ADSCrossRefGoogle Scholar
  23. 23.
    Gibbs, M., A. Hollaender, B. Kok, L. O. Krampitz, and A. San Pietro (editors). 1973. Proc. of the workshop on biosolar energy conversion. NSF-RANN.Google Scholar
  24. 24.
    Goldman, J. C., J. H. Ryther. 1977. Mass production of algae: bioengineering aspects, pp. 376–378. In: Biological solar energy conversion, (ed. by Mitsui, A. et al.) Academic Press, New York.Google Scholar
  25. 25.
    Graigie, J. S., J. McLachlan. 1964. Glycerol as a photosynthetic product in Dunaliella tertiolecta Butcher.Can. J. Bot. 42: 777–778.CrossRefGoogle Scholar
  26. 26.
    Hall, D. O. 1976. Photobiological energy conversion. FEBS letters 64: 6–16.CrossRefGoogle Scholar
  27. 27.
    Hardy, R. W. F., U. D. Havelka. 1977. Food and feed by legumes: CO2 and N2 fixation, foliar fertilization, and assimilate partitioning. P. 299–322. In: Biological solar energy conversion, (ed. by Mitsui, A. et al.) Academic Press, New York.Google Scholar
  28. 28.
    Hasegawa, Y. 1971. Forced cultivation of Laminaria. p. 391–393. In: Proc. 7th Int. Seaweed Symp. (ed. by Nisizawa, K. et al.) John Wiley Sons, New York.Google Scholar
  29. 29.
    Hashimoto, Y., N. Fusetani, K. Nozawa. 1971. Screening of the toxic algae on coral reefs, p. 569–572. In: Proc. 7th Int. Seaweed Symp. (ed. by Nisizawa, K. et al.) John Wiley Sons, New York.Google Scholar
  30. 30.
    Hollaender, A., K. J. Monty, R. M. Pearlson, F. Schmidt-Bleek, W.T. Snyder, E. Volkin (eds.). 1972. An inquiry into biological energy conversion. Gatlinburg. NSF-RANN.Google Scholar
  31. 31.
    Horstmann, U. 1977. Application of solar bioconversion in developing countries, p. 477–436. In: Biological solar energy conversion. (ed. by Mitsui, A. et al.) Academic Press, New York.Google Scholar
  32. 32.
    Imada, O., Y. Saito, K. Teramoto. 1971. Artificial culture of laver. p. 358–363. In: Proc. 7th Int. Seaweed Symp. (ed. by Nisizawa, K. et al.) John Wiley Sons, New York.Google Scholar
  33. 33.
    Jensen, A. 1971. The nutritive value of seaweed meal for domestic animals, p. 7–14. In: Proc. 7th Inst. Seaweed Symp. (ed. by Nisizawa, K. et al.) John Wiley Sons, New York.Google Scholar
  34. 34.
    Kanazawa, A., D. Kakimoto. 1958. Studies on the vitamins of seaweeds. I. Folic acid and folinic acid. Bull. Jap. Soc. Sci. Fish. 24: 573–577.CrossRefGoogle Scholar
  35. 35.
    Kanazawa, A. 1961. Studies on the vitamin B-complex in marine algae. I. On vitamin contents. Mem. Fac. Fish. Kagashima Univ. 10: 38–69.Google Scholar
  36. 36.
    Kobayashi, M. et al. 1969. Sewage purification by photosynthetic bacteria and its use as a fish feed. Bull. Jap. Soc. Sci. Fish. 35: 1021–1026.CrossRefGoogle Scholar
  37. 37.
    Kobayashi, M., K. Mochida, and A. Okuda. 1967. The amino acid composition of photosynthetic bacterial cells. Bull. Jap. Soc. Sci. Fish. 33: 657–660.CrossRefGoogle Scholar
  38. 38.
    Kok, B. 1973. Photosynthesis, p. 22. In: Proc. of the workshop on biosolar conversion (Proc. of the workshop on biosolar conversionby Gibbs, M. et al.) NSF-RANN.Google Scholar
  39. 39.
    Kok, B., C.F. Fowler, H.H. Hardt, and R.J. Radmer. 1976. Biological solar energy conversion: approaches to overcome yield stability and product limitations, p. 53–54. In: Enzyme technology and renewable resources (ed. by Gainer, J.L.) Univ. of Virginia and NSF-RANN.Google Scholar
  40. 40.
    Kreger, D. R. 1962. Cell walls, p. 315–335. In: Physiology and biochemistry of algae, (ed. by Lewin, R.A.) Academic Press, New York.Google Scholar
  41. 41.
    Leese, T. M. 1975. Ocean food and energy farm kelp product conversion. (manuscript) Presented to 141st Ann. Meeting Amer. Assoc. Adv. Sci., New York.Google Scholar
  42. 42.
    Levring, T., H.A. Hoppe, O.J. Schmid (eds.). 1969. Marine algae. Cram, de Gruyter and Co., Hamburg.Google Scholar
  43. 43.
    Lien, S., A. San Pietro. 1975. An inquiry into biophotolysis of water to produce hydrogen. Indiana Univ. and NSF.Google Scholar
  44. 44.
    Mitsui, A. 1975. Multiple utilization of tropical and subtropical marine photosynthetic organisms, p. 13–29. In: Proc. 3rd Int. Ocean Dev. Conf. Seino Printing Co., Tokyo. Vol. 3.Google Scholar
  45. 45.
    Mitsui, A., S. Kumazawa. 1977. Hydrogen production by marine photosynthetic organisms as a potential energy source, p. 23– 51. In: Biological solar energy conversion, (ed. by Mitsui, A. etal.) Academic Press, New York.Google Scholar
  46. 46.
    Mitsui, A. 1976. Long-range concepts: Application of photosynthetic hydrogen production and nitrogen fixation research, p. 653–672. In: Proc. Conf. on Capturing the Sun through By conversion. Washington Center for Metropolitan Studies.Google Scholar
  47. 47a.
    Mitsui, A. 1975. The utilization of solar energy for hydrogen production by cell free system of photosynthetic organisms, p. 309–316. In: Hydrogen Energy, Part A. (ed. by Veziroglu, T.N.) Plenum Publ. Co., New York.Google Scholar
  48. 47B.
    Mitsui, A., S. Miyachi, A. San Pietro, S. Tamura (eds.). 1977. Biological solar energy conversion. Academic Press, New York.Google Scholar
  49. 48.
    Miura, A. 1975a. Porphyra cultivation in Japan, p. 273–304 In: Advance of phycology in Japan, (ed. by Tokida, J. and H. Hirose) Dr. W. Funk Pubi., The Hague.Google Scholar
  50. 49.
    Miura, A. 1975b. Studies on the breeding of cultured Porphyra (Rhodophyceae). p. 81–93. In: 3rd Int. Ocean Dev. Conf. Seino Printing Co., Tokyo. Vol. 3Google Scholar
  51. 50.
    Moiseev, P.A. 1975. Biological resources of the world ocean, p. 53–66. In: 3rd Int. Ocean Dev. Conf. Seino Printing Co., Tokyo. Vol. 3.Google Scholar
  52. 51.
    Munda, I. M. and F. Gubensek. 1976. The amino acid composition of some common marine algae from Iceland. Bot. Mar. 19: 85–92.CrossRefGoogle Scholar
  53. 52.
    Murakami, S., T. Takemoto, Z. Shimzu. 1953. Studies on the effective principles of Digenea simplex. J. Pharm. Soc. Japan 73: 1026–1029.Google Scholar
  54. 53.
    Naylor, J. 1976. Production, trade and utilization of seaweeds and seaweed products. FAO Fish. Tech. Paper No. 159.Google Scholar
  55. 54.
    North, W. J. 1977. Possibilities of biomass from the ocean: the marine farm project, p. 347–361. In: Biological solar energy conversion, (ed. by Mitsui, A. et al.) Academic Press, New York.Google Scholar
  56. 55.
    Ohno, M. 1971. The periodicity of gamete liberation in Monostroma. p. 405–409. In: Prox. 7th Int. Seaweed Symp. John Wiley and Sons, New York.Google Scholar
  57. 56.
    Ozawa, H., Y, Gomi, I. Otsuki. 1967 Pharmacological studies on laminine monocitrate. J. Pharm. Soc. Japan 87: 935–939.Google Scholar
  58. 57.
    Pearson, W. H., W. J. Darby. 1961. Protein nutrition. Ann. Rev. Biochem. 30: 325–346.CrossRefGoogle Scholar
  59. 58.
    Pimentel, D., W. Dritschild, J. Krummel, and J. Kutzman. 1975. Energy and land constraints in food protein production. Science 190: 754–761.ADSGoogle Scholar
  60. 59a.
    Pirie, N.W. 1975. The Spirulina algae, p. 33–39. In: Food protein sources, (ed. by Pirie, N.W.) Cambridge Univ. Press, Cambridge.Google Scholar
  61. 59b.
    Roels, O. A., K. C. Haines, J.B. Sunderlin. 1975. The potential yield of artificial upwelling mariculture. 10th Eur. Symp. Mar. Biol. 1: 381–390.Google Scholar
  62. 60.
    Ryther, J. H. 1975. Mariculture: how much protein and for whom? Oceanus 18 (2): 10–22.Google Scholar
  63. 61.
    Saito, Y. 1975. Undaria. p. 304–320. In: Advance of phycology in Japan, (ed. by Tokida, J. and H. Hirose) Dr. W. Funk Pubi. Co., The Hague.Google Scholar
  64. 62.
    Sanchez, P. A., S.W. Buoi. 1975. Soils of the tropics and the world food crisis. Science 188: 598–604.ADSCrossRefGoogle Scholar
  65. 63.
    Schantz, E. J. 1970. Algal toxins, p. 83–96. In: Properties and products of algae, (ed. by Zaijic, J.E.), Plenum Press, New York.Google Scholar
  66. 64.
    Scrimshaw, N. S., G. Arroyave, R. Bressani. 1958. Nutrition. Ann. Rev. Biochem. 27: 403–426.CrossRefGoogle Scholar
  67. 65.
    Skoryna, S. C., K. C. Hong, Y. Tanaka. 1971. The effects of enzymatic degradation products of alginates on intestinal absorption of radiostrontium, p. 605–607. In: Proc. 7th Int. Seaweed Symp. (ed. by Nisizawa, K. et al.), John Wiley and Sons, New York.Google Scholar
  68. 66.
    Takagi, M. 1975. Seaweeds as medicine, p. 321–325. In: Advance of phycology in Japan. (Ed. by Tokida, J., H. Hirose) Dr. W. Funk Pubi., The Hague.Google Scholar
  69. 67.
    Takemoto, T., K. Daigo, N. Takagi. 1964. Studies on the hypotensive constituents of marine algae. J. Pharm. Soc. Japan 84: 1176–1182.Google Scholar
  70. 68.
    Takemoto, T., K. Daigo, Y, Kondo, Y, Kondo. 1966. Studies on the constituents of Chondria armata. 8. On the structure of domoic acid. J. Pharm. Soc. Japan 86: 874–877.Google Scholar
  71. 69.
    Tamiya, H. 1955. Growing Chlorella for food and feed. Proc. World Symp. Appi. Solar Energy. Phoenix.Google Scholar
  72. 70.
    Tamiya, H. 1957. Mass culture of algae. Ann. Rev. Plant Physiol. 8: 309–334.CrossRefGoogle Scholar
  73. 71.
    Tamiya, H. 1975. Green micro-algae, p. 35–39. In: Food protein sources, (ed. by Pirie, N.W.) Cambridge Univ. Press, Cambridge.Google Scholar
  74. 72.
    Tolbert, N. E., C.B. Osmond (eds.). 1976. Photorespiration in marine plants. Univ. Park Press, Baltimore.Google Scholar
  75. 73.
    Tolbert, N. E. 1977. Regulation of products of photosynthesis by photorespiration and reduction of carbon, p. 243–264. In: Biological solar energy conversion, (ed. by Mitsui, A. et al.) Academic Press, New York.Google Scholar
  76. 74.
    Tsukada, O., T. Kawahara, S. Miyachi. 1977. Mass culture of Chlorella in Asian countries, p. 363–365. In: Biological solar energy conversion, (ed. by Mitsui, A. et al.) Academic Press, New York.Google Scholar
  77. 75.
    Velasquez, G. T. 1971. Studies and utilization of the Philippine marine algae, p. 62–65. In: Proc. 7th Int. Seaweed Symp. (ed. by Nisizawa, K. et al.). John Wiley Sons, New York.Google Scholar
  78. 76.
    Volesky, B., J. E. Zajic, E. Knettig. 1970. Algal products, p. 49–82. In: Properties and products of algae, (ed. by Zajic, J. E.) Plenum Press, New York.Google Scholar
  79. 77.
    Wilcox, H. A. 1975. The ocean food and energy farm project, p. 43– 52. In: Proc. 3rd Int. Ocean Dev. Conf. Seino Printing Co., Tokyo Vol. 3.Google Scholar
  80. 78.
    Zelitch, I. 1975. Improving the efficiency of photosynthesis. Science 188: 626–632.ADSCrossRefGoogle Scholar
  81. 79.
    Zelitch, I., D. J. Oliver, M.B. Berlyn. 1977. Increasing photosynthetic carbon dioxide fixation by the biochemical and genetic regulation of photorespiration. p. 231–242. In: Biological solar energy conversion, (ed. by Mitsui, A. et al.) Academic Press, New York.Google Scholar
  82. 80.
    Meeuse, B. J. D. 1962. Storage products, p. 289–313. In: Physiology biochemistry of algae, (ed. by Lewin, R.A.) Academic Press, New York.Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Akira Mitsui
    • 1
    • 2
  1. 1.Division of Biology and Living ResourcesUniversity of MiamiMiamiUSA
  2. 2.School of Marine and Atmospheric ScienceUniversity of MiamiMiamiUSA

Personalised recommendations