The Determination of Blood Cyanide and Plasma Thiocyanate by Gas Chromatography-Mass Spectrometry

  • I. Thomson
  • R. A. Anderson
  • W. A. Harland


Cyanide is a normal constituent of blood, present at very low levels, usually less than 20 µmoles/1 blood (1, 2). It is involved in a number of metabolic reactions of which the conversion to thiocyanate is quantitatively the most important (3). Thiocyanate may therefore be used as an index of transformed cyanide (4). Methods for the analysis of these two species in body fluids are necessarily extremely sensitive and the existing techniques include colourimetry (4, 5), fluorimetry (6, 7) and gas chromatography (8–10).


Fire Death Cyanide Level Royal Postgraduate Medical School Fire Fatality Blood Cyanide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Y.H. Caplan, “Relationship of Cyanide to Deaths Caused by Fire”, Johns Hopkins University, Applied Physics Laboratory, FPP TR31, June, 1977.Google Scholar
  2. 1).
    Y.H. Caplan, “Relationship of Cyanide to Deaths Caused by Fire”, Johns Hopkins University, Applied Physics Laboratory, FPP TR31, June, 1977.Google Scholar
  3. 3).
    M. Ansell and F.A.S. Lewis, J. Forensic Med., 1970, 17, 148.Google Scholar
  4. 4).
    A.R. Pettigrew and G.S. Fell, Clin. Chem., 1972, 18, 996.Google Scholar
  5. 5).
    A.R. Pettigrew and G.S. Fell, Clin. Chem., 1973, 19, 466.Google Scholar
  6. 6).
    G.G. Guilbault and D.N. Kramer, Anal. Chem., 1966, 38, 834.CrossRefGoogle Scholar
  7. 7).
    J.S. Hanker, R.M. Gamson and H. Klapper, Anal. Chem., 1957, 29, 879.CrossRefGoogle Scholar
  8. 8).
    R.E. Isbell, Anal. Chem., 1963, 35, 255.CrossRefGoogle Scholar
  9. 9).
    R. Altman, “The Microdetermination of Cyanide in Fire Fatalities”, University of Maryland, Ph.D. Dissertation, 1976.Google Scholar
  10. 10).
    J.C. Valentour, V. Aggarwal and I. Sunshine, Anal. Chem., 1974, 46, 924.CrossRefGoogle Scholar
  11. 11).
    W.D. Woolley, Br. Polymer J., 1972, 4, 27.CrossRefGoogle Scholar
  12. 12).
    D.N. Napier, Med. Sci. Law, 1977, 12, 83.Google Scholar
  13. 13).
    K. Sumi and Y. Tsuchiya, J. Fire Flammability, 1973, 4, 15.Google Scholar
  14. 14).
    P.C. Bowes, Med. Sci. Law, 1976, 104.Google Scholar
  15. 15).
    K.M. Dubowski and J.L. Luke, Ann. Clin. Lab. Sci., 1973, 3, 53.Google Scholar
  16. 16).
    D.J. Blackmore, Analyst, 1970, 95, 439.CrossRefGoogle Scholar
  17. 17).
    A.W. Freireich and D. Landau, J. Forensic Sci., 1971, 16, 112.Google Scholar
  18. 18).
    R.A. Shipley and R.E. Clark, “Tracer Methods for In Vivo Kinetics. Theory and Applications”, Academic Press, New York, 1972.Google Scholar
  19. 19).
    H.R. Wetherall, J. Forensic Sci., 1966, 2, 167.Google Scholar
  20. 20).
    T.A. Baillie, R.A. Anderson, M. Axelson, K. Sjovall and J. Sjovall, “Proceedings of International Symposium on Stable Isotopes: Applications in Pharmacology, Toxicology and Clinical Research”, Royal Postgraduate Medical School, London, January,1977, The Macmillan Press Ltd..Google Scholar
  21. 21).
    “Toxic and Hazardous, Industrial Chemicals Safety Manual”, 226 The International Technical Information Institute, Tokyo, 1975, 1976, p. 273.Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • I. Thomson
    • 1
  • R. A. Anderson
    • 1
  • W. A. Harland
    • 1
  1. 1.Department of Forensic MedicineThe University of GlasgowGlasgowScotland

Personalised recommendations