The Principles of Metabolic Control

  • Robert H. Herman

Abstract

Theoretical biology attempts to construct basic principles of biology and, by derivation therefrom, to describe the behavior of biological systems. As such, the principles of metabolic control form a subset of the basic principles of theoretical biology.

Keywords

Folate Catalase Aniline Adenine Aldosterone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, A. K., and Jacob, S. T., 1978, Hydrolysis of poly(A) to adenine nucleotides by purified poly(A) polymerase, Proc. Natl. Acad. Sci. USA 75: 2085.PubMedGoogle Scholar
  2. Anderson, J. W., and King, P., 1975, Subcellular distribution of hexokinase activity in rat jejunal mucosa: Response to diabetes and dietary changes, Biochem. Med. 12: 1.PubMedGoogle Scholar
  3. Arnold, H., and Pette, D., 1968, Binding of glycolytic enzymes to structure proteins of the muscle, Eur. J. Biochem. 6: 163.PubMedGoogle Scholar
  4. Arnold, H., and Pette, D., 1970, Binding of aldolase and triosephosphate dehydrogenase to F-actin and modification of catalytic properties of aldolase, Eur. J. Biochem. 15: 360.PubMedGoogle Scholar
  5. Arnone, A., 1974, Mechanism of action of hemoglobin, Annu. Rev. Med. 25: 123.PubMedGoogle Scholar
  6. Babior, B. M., 1978, Oxygen-dependent microbial killing by phagocytes, N. Engl. J. Med. 298: 659.PubMedGoogle Scholar
  7. Baker, B. L., and Hultquist, D. E., 1978, A copper-binding immunoglobulin from a myeloma patient, J. Biol. Chem. 253: 1195.PubMedGoogle Scholar
  8. Bauer, C., and Kurtz, A., 1977, Oxygen-linked CO2 binding to isolated ß subunits of human hemoglobin, J. Biol. Chem. 252: 2952.PubMedGoogle Scholar
  9. Beard, J. R., and Razzell, W. E., 1964, Purification of alkaline ribonuclease II from mitochondrial and soluble fractions of liver, J. Biol. Chem. 239: 4186.PubMedGoogle Scholar
  10. Bell, J. L., and Baron, D. N., 1961, Isoenzyme of isocitric dehydrogenase, Biochem. J. 82: 5 P.Google Scholar
  11. Benesch, R., and Benesch, R. E., 1967, The effect of organic phosphates from the human erythrocyte on the allosteric properties of hemoglobin, Biochem. Biophys. Res. Commun. 26: 162.PubMedGoogle Scholar
  12. Benesch, R., Benesch, R. E., and Yu, C. I., 1968, Reciprocal binding of oxygen and diphosphoglycerate by human hemoglobin, Proc. Natl. Acad. Sci. USA 59: 526.PubMedGoogle Scholar
  13. Benesch, R. E., Benesch, R., and Yu, C. I., 1969, The oxygenation of hemoglobin in the presence of 2,3-diphosphoglyce rate. Effect of temperature, pH, ionic strength, and hemoglobin concentration, Biochemistry 8: 2567.PubMedGoogle Scholar
  14. Berglund, L., Ljungstrom, O., and Engstrom, L., 1977, Purification and characterization of pig kidney pyruvate kinase (type A), J. Biol. Chem. 252: 6108.PubMedGoogle Scholar
  15. Bernard, C., 1878, Leçons sur les phénomènes de la Vie Communs aux Animaux et aux Végétaux, J. B. Baillière et Fils, Paris, France.Google Scholar
  16. Bertalanffy, F. D., and Lau, C., 1963, Mitotic rates, renewal times, and cytodynamics of the female genital tract epithelia in the rat, Acta Anat. 54: 39.PubMedGoogle Scholar
  17. Berthillier, G., Coleman, R., and Walker, D. G., 1976, The topographical location and unique nature of a glucokinase associated with the Golgi apparatus of rat liver, Biochem. J. 154: 193.PubMedGoogle Scholar
  18. Black, H. S., and Lo, W. B., 1971, Formation of a carcinogen in human skin irradiated with ultraviolet light, Nature 234: 306.PubMedGoogle Scholar
  19. Black, H. S., and Douglas, D. R., 1972, A model system for the evaluation of the role of cholesterol a-oxide in ultraviolet carcinogenesis, Cancer Res. 32: 2630.PubMedGoogle Scholar
  20. Bonaventura, J., Bonaventura, C., Amiconi, G., Tentori, L., Brunori, M., and Antonini, E., 1975, Allosteric interactions in non-α chains isolated from normal human hemo-globin, fetal hemoglobin, and hemoglobin Abruzzo (ß 143(H21) His → Arg), J. Biol. Chem. 250: 6278.PubMedGoogle Scholar
  21. Borst, P., and Peeters, E., 1961, The intracellular localization of glutamateoxaloacetate transaminases in heart, Biochim. Biophys. Acta 54: 188.PubMedGoogle Scholar
  22. Brewer, G.J., 1969, Erythrocyte metabolism and function: Hexokinase inhibition by 2,3-diphosphoglycerate and interaction with ATP and Mg2+, Biochim. Biophys. Acta 192: 157.PubMedGoogle Scholar
  23. Brissenden, J. E., and Cox, D. W., 1978, Electrophoretic and quantitative assessment of vitamin D-binding protein (group-specific component) in inherited rickets, J. Lab. Clin. Med. 91: 455.PubMedGoogle Scholar
  24. Brok, F., Ramot, B., Zwang, E., and Danon, D., 1966, Enzyme activities in human red blood cells of different age groups, Israel J. Med. Sci. 2: 291.PubMedGoogle Scholar
  25. Bunn, H. F. 1971, Differences in the interaction of 2,3-diphosphoglycerate with certain mammalian hemoglobins, Science 172: 1049.PubMedGoogle Scholar
  26. Bunn, H. F., Forget, B. G., and Ranney, H. M. 1977, Unstable hemoglobin variants-congenital Heinz body hemolytic anemia, in: Human Hemoglobins, pp. 282–311, W. B. Saunders, Philadelphia.Google Scholar
  27. Burger, R. L., Mehlman, C. S., and Allen, R. H., 1975, Human plasma R-type vitamin B12-binding proteins. I. Isolation and characterization of transcobalamin I, transcobalamin III, and the normal granulocyte vitamin B12-binding protein, J. Biol. Chem. 250: 7700.PubMedGoogle Scholar
  28. Cameron, I. L., 1970, Cell renewal in the organs and tissues of nongrowing adult mouse, Tex. Rep. Biol. Med. 28: 203.PubMedGoogle Scholar
  29. Cannon, W. B., 1929, Organization for physiological homeostatsis, Physiol. Rev. 9: 399.Google Scholar
  30. Carroll, M., Dance, N., Masson, P. K., Robinson, D., and Winchester, B. G., 1972, Human mannosidosis—the enzymic defect, Biochem. Biophys. Res. Commun. 49: 579.PubMedGoogle Scholar
  31. Castle, W. B., and Townsend, W. C. 1929, Observations on the etiologic relationship of achylia gastrica to pernicious anemia. II. The effect of the administration to patients with pernicious anemia of beef muscle after incubation with normal human gastric juice, Am. J. Med. Sci. 178: 764.Google Scholar
  32. Catignani, G. L., 1975, An α-tocopherol binding protein in rat liver cytoplasm, Biochem. Biophys. Res. Commun. 67: 66.PubMedGoogle Scholar
  33. Chanutin, A., and Curnish, R. R., 1967, Effect of organic and inorganic phosphates on the oxygen equilibrium of human erythrocytes, Arch, Biochem. Biophys. 121: 96.Google Scholar
  34. Chapman, R. G., and Schaumburg, L., 1967, Glycolysis and glycolytic enzyme activity of aging red cells in man. Changes in hexokinase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase and glut amic-oxalacetic transaminase, Br. J. Haematol. 13: 665.PubMedGoogle Scholar
  35. Chen, S.-H., and Giblett, E. R., 1971, Polymorphism of soluble glutamicpyruvic transaminase: A new genetic marker in man, Science 173: 148.PubMedGoogle Scholar
  36. Chian, L. T. Y., and Wilgram, G. F., 1967, Tyrosinase inhibition: Its role in suntanning and in albinism, Science 155: 198.PubMedGoogle Scholar
  37. Chock, P. B., and Stadtman, E. R., 1977, Superiority of interconvertible enzyme cascades in metabolic regulation: Analysis of multicylic systems, Proc. Natl. Acad. Sci. USA 74: 2766.PubMedGoogle Scholar
  38. Chou, P. Y., and Fasman, G. D., 1974, Prediction of protein conformation, Biochemistry 13: 222.PubMedGoogle Scholar
  39. Chung, J., and Wood, J. L., 1971, Oxidation of thiocyanate to cyanide catalyzed by hemoglobin, J. Biol. Chem. 246: 555.PubMedGoogle Scholar
  40. Clarke, S., 1976, A major polypeptide component of rat liver mitochondria: Carbamyl phosphate synthetase, J. Biol. Chem. 251: 950.PubMedGoogle Scholar
  41. Cleaver, J. E., 1972, Excision repair: Our current knowledge based on human (xeroderma pigmentosum) and cattle cells, in: Molecular and Cellular Repair Processes ( R. F. Beers, Jr., R. M. Herriott, and R. C. Tilghman, eds.), pp. 195 - 211, The Johns Hopkins University Press, Baltimore.Google Scholar
  42. Coleman, P. F., Suttle, D. P., and Stark, G. R., 1977, Purification from hamster cells of the multifunctional protein that initiates de novo synthesis of pyrimidine nucleotides, J. Biol. Chem. 252: 6379.PubMedGoogle Scholar
  43. Comper, W. D., and Laurent, T. C., 1978, Physiological function of connective tissue polysaccharides, Physiol. Rev. 58: 255.PubMedGoogle Scholar
  44. Conklin, K. A., Yamashiro, K. M., and Gary, G. M., 1975, Human intestinal sucraseisomaltase. Identification of free sucrase and isomaltase and cleavage of the hybrid into active distinct subunits, J. Biol. Chem. 250: 5735.PubMedGoogle Scholar
  45. Conover, T. E., and Ernster, L., 1962, DT diaphorase. II. Relation to respiratory chain of intact mitochondria, Biochim. Biophys. Acta 58: 189.PubMedGoogle Scholar
  46. Cook, J. S., 1972, Photoenzymatic repair in animal cells, in: Molecular and Cellular Repair Processes ( R. F. Beers, Jr., R. M. Herriott, and R. C. Tilghman, eds.), pp. 79–94, The Johns Hopkins University Press, Baltimore,Google Scholar
  47. Crampin, J., Nicholson, B. H., and Robson, B., 1978, Protein folding and heterogeneity inside globular proteins, Nature 272: 558.PubMedGoogle Scholar
  48. Curzon, G., and O’Reilly, S., 1960, The effects of some ions and chelating agents on the oxidase activity of ceruloplasmin, Biochem. J. 77: 66.PubMedGoogle Scholar
  49. Daddona, P. E., and Kelley, W. N., 1978, Human adenosine deaminase binding protein, J. Biol. Chem. 253: 4617.PubMedGoogle Scholar
  50. Davis, N. R., and Anwar, R. A., 1970, On the mechanism of formation of desmosine and isodesmosine cross-links of elastin, J. Am. Chem. Soc. 92: 3778.PubMedGoogle Scholar
  51. Dayhoff, M. O., Barker, W. C., and Schwartz, R. M., 1978, Evolution of the mammalian genome, a view based on protein and nucleic acid sequence data, Fed. Proc. 37: 1419.Google Scholar
  52. Dean, R. T., and Barrett, A. J., 1976, Lysosomes, Essays in Biochem. 12: 1.Google Scholar
  53. Demma, L. S., and Salhany, J. M., 1977, Direct generation of superoxide anions by flash photolysis of human oxyhemoglobin, J. Biol. Chem. 252: 1226.PubMedGoogle Scholar
  54. Dewald, B., and Touster, O., 1973, A new α-D-mannosidase occurring in Golgi membranes, J. Biol. Chem. 248: 7223.PubMedGoogle Scholar
  55. Dische, Z., 1941, Interdependence of various enzymes of the glycolytic system and the automatic regulation of their activity within the cells. I. Inhibition of the phosphorylation of glucose in red corpuscles by monophosphoglyceric and diphosphoglyceric acids; state of the diphosphoglyceric acid and the phosphorylation of glucose, Trav. Membres Soc. Chim. Biol. 23: 1140.Google Scholar
  56. Dixon, J. W., and Sarkar, B., 1974, Isolation, amino acid sequence and copper (II)-binding properties of peptide (1–24) of dog serum albumin, J. Biol. Chem. 249: 5872.PubMedGoogle Scholar
  57. Drake, J. W., and Baltz, R. H., 1976, The biochemistry of mutagenesis, Annu. Rev. Biochem. 45: 11.PubMedGoogle Scholar
  58. Dreyfus, J. C., Rubinson, H., Schapira, F., Weber, A., Marie, J., and Kahn, A., 1977, Possible molecular mechanisms of aging, Gerontology 23: 211.PubMedGoogle Scholar
  59. Drury, E. J., Bazar, L. S., and MacKenzie, R. E., 1975, Form iminotransferase-cyclodeaminase from porcine liver. Purification and physical properties of the enzyme complex, Arch. Biochem. Biophys. 169: 662.PubMedGoogle Scholar
  60. Duley, J. A., and Holmes, R. S., 1976, L-α-Hydroxyacid oxidase isozymes. Purification and molecular properties, Eur. J. Biochem. 63: 163.PubMedGoogle Scholar
  61. Ellenbogen, L., Burson, S. L., and Williams, W. L., 1958, Purification of intrinsic factor, Proc. Soc. Exp. Biol. Med. 97: 760.PubMedGoogle Scholar
  62. Engasser, J.-M., Flamm, M., and Horvath, C., 1977, Hormone regulation of cellular metabolism: Interplay of membrane transport and consecutive enzymic reaction, J. Theor. Biol. 67: 433.PubMedGoogle Scholar
  63. Enoch, H. G., Fleming, P. J., and Strittmatter, P., 1977, Cytochrome b5 and cytochrome b5 reductase-phospholipid vesicles, J. Biol. Chem. 252: 5656.PubMedGoogle Scholar
  64. Evans, G. W., 1973, Copper homeostasis in the mammalian system, Physiol. Rev. 53: 535.PubMedGoogle Scholar
  65. Evans, G. W., Majors, P. F., and Cornatzer, W. E., 1970, Mechanism of cadmium and zinc antagonism of copper metabolism, Biochem. Biophys. Res. Commun. 40: 1142.PubMedGoogle Scholar
  66. Eventoff, W., Rossmann, M. G., Taylor, S. S., Torff, H-S., Meyer, H., Keil, W., and Kiltz, H-H., 1977, Structural adaptations of lactate dehydrogenase isozymes, Proc. Natl. Acad. Sci. USA 74: 2677.PubMedGoogle Scholar
  67. Exton, J. H., and Park, C. R., 1967, Control of gluconeogenesis in liver. I. General features of gluconeogenesis in the perfused liver of rats, J. Biol. Chem. 242: 2622.PubMedGoogle Scholar
  68. Exton, J. H., and Park, C. R., 1968, Control of gluconeogenesis in liver. II. Effects of glucagon, catecholamines, and adenosine 3’, 5’-monophosphate on gluconeogenesis in the perfused rat liver, J. Biol. Chem. 243: 4189.PubMedGoogle Scholar
  69. Fawcett, D. W., 1966, The Cell. Its Organelles and Inclusions. An Atlas o f Fine Structure, W. B. Saunders, Philadelphia.Google Scholar
  70. Fichera, G., Sneider, M. A., and Wyman, J., 1977a, On the existence of a steady state in a biological system, Proc. Natl. Acad. Sci. USA 74: 4182.PubMedGoogle Scholar
  71. Fichera, G., Sneider, M. A., and Wyman, J., 1977b, On the existence of a steady state in a biological system, Mem. Accad. Nazionale Lincei, Cl. Sc. Mat. Fis. Nat., Roma 14: 1.Google Scholar
  72. Florkin, M., and Stotz, E. H., 1962–1977, Comprehensive Biochemistry, Elsevier, Amsterdam.Google Scholar
  73. Foemmel, R. S., Gray, R. H., and Bernstein, I. A., 1975, Intracellular localization of fructose 1,6-bisphosphate aldolase, J. Biol. Chem. 250: 1892.PubMedGoogle Scholar
  74. Ford, H. C., and Engel, L. L., 1974, Purification and properties of the Δ5-3 ß-hydroxysteroid dehydrogenase-isomerase system of sheep adrenal cortical microsomes, J. Biol. Chem. 249: 1363.PubMedGoogle Scholar
  75. Francis, S. H., Meriwether, B. P., and Park, J. H., 1973, Effects of photooxidation of histidine-38 on the various catalytic activities of glyceraldehyde-3-phosphate dehydrogenase, Biochemistry 12: 346.PubMedGoogle Scholar
  76. Frey, W. H., II, and Utter, M. F., 1977, Binding of acetyl-CoA to chicken liver pyruvate carboxylase, J. Biol. Chem. 252: 51.PubMedGoogle Scholar
  77. Fridovich, I., 1977, Oxvgen is toxic Bio Science 27: 462.Google Scholar
  78. Futterman, S., Saari, J. C., and Blair, S., 1977, Occurrence of a binding protein for 11-cis-retinal in retina, J. Biol. Chem. 252: 3267.PubMedGoogle Scholar
  79. Gaertner, F. H., and Cole, K. W., 1977, A cluster-gene: Evidence for one gene, one polypeptide, five enzymes, Biochem. Biophys. Res. Commun. 75: 259.PubMedGoogle Scholar
  80. Giroux, E. L., Durieux, M., and Schechter, P. J., 1976, A study of zinc distribution in human serum, Bioinorg. Chem. 5: 211.PubMedGoogle Scholar
  81. Glass, G. B. J., 1963, Gastric intrinsic factor and its function in the metabolism of vitamin B12, Physiol. Rev. 43: 529.PubMedGoogle Scholar
  82. Glover, J., Jay, C., and White, G. H., 1974, Distribution of retinol-binding protein in tissues, Vitamins Horm. 32: 215.Google Scholar
  83. Goedde, H. W., and Keller, W., 1967, Metabolic pathways in maple syrup urine disease, in: Amino Acid Metabolism and Genetic Variation ( W. L. Nyhan, ed.), pp. 191–214, McGraw-Hill, New York.Google Scholar
  84. Goldberg, B., and Stern, A., 1976, Production of superoxide anion during the oxidation of hemoglobin by menadione, Biochim. Biophys. Acta 437: 628.PubMedGoogle Scholar
  85. Goldstein, S., and Moerman, E. J., 1975, Heat-labile enzymes in Werner’s syndrome fibroblasts, Nature 255: 159.PubMedGoogle Scholar
  86. Gonzalez, F., and Kemp, R. G., 1978, The A2B2 hybrid isozyme of phosphofructokinase, J. Biol. Chem. 253: 1493.PubMedGoogle Scholar
  87. Goodman, DeW. S., 1974, Vitamin A transport and retinol-binding protein metabolism, Vitamins Horm. 32: 167.Google Scholar
  88. Green, D. E., Murer, E., Hultin, H. O., Richardson, S. H., Salmon, B., Brierley, G. P., and Baum, H., 1965, Association of integrated metabolic pathways with membranes. I. Glycolytic enzymes of the red blood corpuscle and yeast, Arch. Biochem. Biophys. 112: 635.PubMedGoogle Scholar
  89. Greene, M. L., Boyle, J. A., and Seegmiller, J. E., 1970, Substrate stabilization: genetically controlled reciprocal relationship of two human enzymes, Science 167: 887.PubMedGoogle Scholar
  90. Guthöhrlein, G., and Knappe, J., 1968, Structure and function of carbamoylphosphate synthetase. On the mechanism of bicarbonate activation, Eur. J. Biochem. 7:119. Guzzo, A. V., 1965, The influence of amino-acid sequence on protein structure, Biophys. J. 5: 809.Google Scholar
  91. Habig, W. H., Pabst, M. J., Fleischner, G., Gatmaitan, Z., Arias, I. M., and Jakoby, W. B., 1974, The identity of glutathione S-transferase B with ligandin, a major binding protein of liver, Proc. Natl. Acad. Sci. USA 71: 3879.PubMedGoogle Scholar
  92. Hagler, A. T., and Moult, J., 1978, Computer simulation of the solvent structure around biological macromolecules, Nature 272: 222.PubMedGoogle Scholar
  93. Hagler, L., Coppes, R. I., and Herman, R. H., 1976, Metmyoglobin reductase: Identifi¬cation of reduced nicotinamide adenine dinucleotide (NADH)-dependent enzyme activity from bovine heart which reduces metmyoglobin, Fed. Proc. 35: 1423.Google Scholar
  94. Haining, R. G., Hulse, T. E., and Labbe, R. F., 1969, Photohemolysis. The comparative behavior of erythrocytes from patients with different types of porphyria, Proc. Soc. Exp. Biol. Med. 132: 625.PubMedGoogle Scholar
  95. Halestrap, A. P., and Denton, R. M., 1974, Hormonal regulation of adipose-tissue acetyl-coenzyme A carboxylase by changes in the polymeric state of the enzyme, Biochem. J. 142: 365.PubMedGoogle Scholar
  96. Hall, C. A., 1975, Transcobalamins I and II as natural transport proteins of vitamin B12, J. Clin. Invest. 56: 1125.PubMedGoogle Scholar
  97. Hanker, J. S., and Romanovicz, D. K., 1977, Phi bodies: Peroxidatic particles that produce crystalloidal cellular inclusions, Science 197: 895.PubMedGoogle Scholar
  98. Hanna, C., Bicknell, D. S., and O’Brien, J. E., 1961, Cell turnover in the adult human eye, Arch. Oph thalmol. 64: 536.Google Scholar
  99. Harris, H., 1969, Genes and isozymes, Proc. R. Soc. London Ser. B 174: 1.Google Scholar
  100. Harrison, J. E., 1974, A proposed hydrogen transfer function for cytochrome c, Proc. Natl. Acad. Sci. USA 71: 2332.Google Scholar
  101. Havir, E. A., Tamir, H., Ratner, S., and Warner, R. C., 1965, Biosynthesis of urea. XI. Preparation and properties of crystalline argininosuccinase, J. Biol. Chem. 240: 3079.PubMedGoogle Scholar
  102. Hayflick, L., 1973, The biology of human aging, Am. J. Med. Sci. 265: 432.PubMedGoogle Scholar
  103. Hekman, A., 1971, Association of lactoferrin with other proteins as demonstrated by changes in electrophoretic mobility, Biochim. Biophys. Acta 251: 380.PubMedGoogle Scholar
  104. Heller, C. G., and Clermont, Y., 1963, Spermatogenesis in man: An estimate of its duration, Science 140: 184.PubMedGoogle Scholar
  105. Henderson, N. S., 1965, Isozymes of isocitrate dehydrogenase: Subunit structure and intracellular location, J. Exp. Zool. 158: 263.PubMedGoogle Scholar
  106. Henderson, N. S., 1966, Isozymes and genetic control of NADP-malate dehydrogenase in mice, Arch. Biochem. Biophys. 117: 28.PubMedGoogle Scholar
  107. Hernandez, A., and Crane, R. K., 1966, Assocation of heart hexokinse with subcellular structure, Arch. Biochem. Biophys. 113: 223.PubMedGoogle Scholar
  108. Holick, M. F., Frommer, J. E., McNeill, S. C., Richtand, N. M., Henley, J. W., and Potts, J. T., Jr., 1977, Photometabolism of 7-dehydrocholesterol to previtamin D3 in skin, Biochem. Biophys. Res. Commun. 76: 107.PubMedGoogle Scholar
  109. Holliday, R., and Tarrant, G. M., 1972, Altered enzymes in aging human fibroblasts, Nature 238: 26.PubMedGoogle Scholar
  110. Holliday, R., Huschtscha, L. I., Tarrant, G. M., and Kirkwood, T. B. L., 1977, Testing the commitment theory of cellular aging, Science 198: 366.PubMedGoogle Scholar
  111. Holmberg, C. G., and Laurell, C.-B., 1951, Investigations in serum copper. III. Cerulo-plasmin as enzyme, Acta Chem. Scand. 5: 476.Google Scholar
  112. Hooton, B. T., 1968, Creatine kinase isoenzymes and the role of thiol groups in the enzymic mechanism, Biochemistry 7: 2063.PubMedGoogle Scholar
  113. Horecker, B. L., 1975, Biochemistry of isozymes, in: Isozymes. Molecular Structure, Vol. 1 ( C. I. Markert, ed.), pp. 11–38, Academic Press, New York.Google Scholar
  114. Houben, A., and Remacle, J., 1978, Lysosomal and mitochondrial heat labile enzymes in aging human fibroblasts, Nature 275: 59.PubMedGoogle Scholar
  115. Hsieh, H.-S., and Jaffe, E. R., 1971, Electrophoretic and functional variants of NADH-methemoglobin reductase in hereditary methemoglob inemia, J. Clin. Invest. 50: 196.PubMedGoogle Scholar
  116. Huang, W.-Y. Cohn, D. V., Hamilton, J. W., Fullmer, C., and Wasserman, R. H., 1975, Calcium-binding protein of bovine intestine. The complete amino acid sequence, J. Biol. Chem. 250: 7647.PubMedGoogle Scholar
  117. Huber, C. T., and Frieden, E., 1970, Substrate activation and kinetics of ferroxidase, J. Biol. Chem. 245: 3973.PubMedGoogle Scholar
  118. Hynes, R. O., 1976, Cell surface proteins and malignant transformation, Biochem. Biophys. Acta 458: 73.PubMedGoogle Scholar
  119. Imondi, A. R., Balis, M. E., and Lipkin, M., 1969, Changes in enzyme levels accompanying differentiaion of intestinal epithelial cells, Exp. Cell Res. 58: 323.PubMedGoogle Scholar
  120. Ingbar, S. H., 1963, Observations concerning the binding of thyroid hormones by human serum prealbumin, J. Clin. Invest. 42: 143.PubMedGoogle Scholar
  121. Jackson, R. L., Morrisett, J. D., and Gotto, A. M. Jr., 1976, Lipoprotein structure and metabolism, Physiol. Rev. 56: 259.PubMedGoogle Scholar
  122. Jacob, H. S., Brain, M. C., and Dacie, J. V., 1968a, Altered sulfhydryl reactivity of hemo¬globins and red blood cell membranes in congenital Heinz body hemolytic anemia, J. Clin. Invest. 47: 2664.PubMedGoogle Scholar
  123. Jacob, H. S., Brain, M. C., Dacie, J. V., Carrel, R. W., and Lehmann, H., 1968b, Abnormal haem binding and globin SH group blockade in unstable hemoglobi.ns, Nature 218: 1214.PubMedGoogle Scholar
  124. Jacobs, A., and Worwood, M., 1975, Ferritin in serum. Clinical and biochemical implications, N. Engl. J. Med. 292: 951.PubMedGoogle Scholar
  125. Jacobs, H., Heldt, H. W., and Klingenberg, M., 1964, High activity of creatine kinase in mitochondria from muscle and brain and evidence for a separate mitochondrial isoenzyme of creatine kinase, Biochem. Biophys. Res. Commun. 16: 516.PubMedGoogle Scholar
  126. Jakoby, W. B., and Bonner, D. M., 1956, Kynurenine transaminase from Neurospora, J. Biol. Chem. 221: 689.PubMedGoogle Scholar
  127. Jayle, M. F., 1951, Méthode de dosage de 1’haptoglobine sérique, Bull Soc. Chim. Biol. 33: 876.PubMedGoogle Scholar
  128. Johnson, H. A., Haymaker, W. E., Rubini, J. R., Fliedner, T. M., Bond, V. P., Cronkite, E. P., and Hughes, W. L., 1960, A radioautographic study of a human brain and glioblastoma multiforme after the in vivo uptake of tritiated thymidine, Cancer 13: 636.PubMedGoogle Scholar
  129. Katsunuma, T., Temma, M., and Katunuma, N., 1968, Allosteric nature of a glutaminase isozyme in rat liver, Biochem. Biophys. Res. Commun. 32: 433.PubMedGoogle Scholar
  130. Katzberg, A. A., 1952, The influence of age on the rate of desquamation of the human epidermis, Anat. Rec. (Suppl.) 112: 418.Google Scholar
  131. Kavipurapu, P. R., and Jones, M. E., 1976, Purification, size, and properties of the complex of orotate phosphoribosyltransferase:orotidylate decarboxylase from mouse Ehrlich ascites carcinoma, J. Biol. Chem. 251: 5589.PubMedGoogle Scholar
  132. Kilmartin, J. V., and Rossi-Bernardi, L., 1973, Interaction of hemoglobin with hydrogen ions, carbon dioxide, and organic phosphates, Physiol. Rev. 53: 836.PubMedGoogle Scholar
  133. Kirk, J. R., Brunner, J. R., Stine, C. M., and Schweigert, B. S., 1972, Effects of pH and electrodialysis on the bindings of vitamin B12 by ß-lactoglobulin and associated peptides, J. Nutr. 102: 699.PubMedGoogle Scholar
  134. Kirkwood, T. B. L., 1977, Evolution of aging, Nature 270: 301.PubMedGoogle Scholar
  135. Kirschner, K., and Bisswanger, H., 1976, Multifunctional proteins, Annu. Rev. Biochem. 45: 143.PubMedGoogle Scholar
  136. Kitamura, M., and Nishina, T., 1975, Hereditary deficiency of subunit B of lactate dehydrogenase, in: Isozymes, Physiological Function, Vol. 2 (C. 1. Markert, ed.), pp. 97–111, Academic Press, New York.Google Scholar
  137. Klatskin, G., and Bungards, L., 1956, Bilirubin-protein linkage in serum and their relationship to the Van den Berg reaction, J. Clin. Invest. 35: 537.PubMedGoogle Scholar
  138. Koch-Weser, J., and Sellers, E. M., 1976a, Binding of drugs to serum albumin, N. Engl. J. Med. 294: 311.PubMedGoogle Scholar
  139. Koch-Weser, J., and Sellers, E. M., 1976b, Binding of drugs to serum albumin, N. Engl. J. Med. 294: 526.PubMedGoogle Scholar
  140. Koen, A. L., and Goodman, M., 1969, Aconitate hydratase isozymes: Subcellular location, tissue distribution and possible subunit structure, Biochim. Biophys. Acta 191:698.PubMedGoogle Scholar
  141. Kornberg, A., 1976, RNA priming of DNA replication, in: RNA Polymerase ( R. Losich and M. Chamberlin, eds.), pp. 331–352, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  142. Kosenow, W., and Treibs, A., 1953, Lichtüberempfindlichkeit and Porphyrinämie, Z. Kinderheilk. 73: 82.PubMedGoogle Scholar
  143. Krebs, H. A., 1975, The role of chemical equilibria in organ function, Adv. Enz. Regul. 13: 449.Google Scholar
  144. Lahav, N., White, D., and Chang, S., 1978, Peptide formation in the prebiotic era: Thermal condensation of glycine in fluctuating clay environments, Science 201: 67.PubMedGoogle Scholar
  145. Lau, S.-J., Kruck, T. P. A., and Sarkar, B., 1974, A peptide molecule mimicking the copper (II) transport site of human serum albumin, J. Biol. Chem. 249: 5878.PubMedGoogle Scholar
  146. Leblond, D. P., and Stevens, C. E., 1948, The constant renewal of the intestinal epithelium in the albino rat, Anat. Rec. 100: 357.PubMedGoogle Scholar
  147. Lee, I.-Y., Strunk, R. C., and Coe, E.-L., 1967, Coordination among rate-limiting steps of glycolysis and respiration in intact ascites tumor cells, J. Biol. Chem. 242: 2021.PubMedGoogle Scholar
  148. Leffell, M. S., and Spitznagel, J. K., 1972, Association of lactoferrin with lysozyme in granules in human polymorphonuclear leukocytes, Infect. Immunol. 6: 761.Google Scholar
  149. Lentz, T. L., 1971, Cell Fine Structure. An Atlas of Drawings of Whole-Cell Structure W. B. Saunders, Philadelphia.Google Scholar
  150. Levi, A. J., Gatmaitan, Z., and Arias, I. M., 1969, Two hepatic cytoplasmic protein fractions, Y and Z, and their possible role in the hepatic uptake of bilirubin, sulfobromophthalein and other anions, J. Clin. Invest. 48: 2156.PubMedGoogle Scholar
  151. Levine, M., Muirhead, H., Stammers, D. K., and Stuart, D. I., 1978, Structure of pyruvate kinase and similarities with other enzymes: Possible implications for protein taxonomy and evolution, Nature 271: 626.PubMedGoogle Scholar
  152. Lewis, C. M., and Tarrant, G. M., 1972, Error theory and aging in human diploid fibro¬blasts, Nature 239: 316.PubMedGoogle Scholar
  153. Lien, E. L., Ellenbogen, L., Law, P. Y., and Wood, J. M., 1973, The mechanism of cobalamin binding to hog intrinsic factor, Biochem. Biophys. Res. Commun. 55: 730.PubMedGoogle Scholar
  154. Lindahl, LT., and Høøk, M., 1978, Glycosaminoglycans and their binding to biological macromolecules, Annu. Rev. Biochem. 47: 385.PubMedGoogle Scholar
  155. Litwack, G., Ketterer, B., and Arias, I. M., 1971, Ligandin: A hepatic protein which binds steroids, bilirubin, carcinogens and a number of exogenous organic anions, Nature 234: 466.PubMedGoogle Scholar
  156. Lo, H. H., and Schimmel, P. R., 1969, Interaction of human hemoglobin with adenine nucleotides, J. Biol. Chem. 244: 5084.PubMedGoogle Scholar
  157. Lo, W.-B., and Black, H. S., 1972, Formation of cholesterol-derived photoproducts in human skin, J. Invest. Dermatol. 58: 278.PubMedGoogle Scholar
  158. Long, C. L., Hill, H. N., Weinstock, I. M., and Henderson, L. M., 1954, Studies of the enzymatic transformation of 3-hydroxyanthranilate to quinolinate, J. Biol. Chem. 211: 405.PubMedGoogle Scholar
  159. Longenecker, J. B., and Snell, E. E., 1957, Pyridoxal and metal ion catalysis of α,ß elimination reactions of serine-3-phosphate and related compounds, J. Biol. Chem. 225: 409.PubMedGoogle Scholar
  160. Lornitzo, F. A. Qureshi, A. A., and Porter, J. W., 1975, Subunits of fatty acid synthase complexes. Enzymatic activities and properties of the half-molecular weight nonidentical subunits of pigeon liver fatty acid synthase, J. Biol. Chem. 250: 4520.Google Scholar
  161. Lynch, R. E., and Fridovich, I., 1978, Effects of superoxide on the erythrocyte membrane, J. Biol. Chem. 253: 1838.PubMedGoogle Scholar
  162. MacDonald, R. A., 1961, “Lifespan” of liver cells, Arch. Intern. Med. 107:335.PubMedGoogle Scholar
  163. MacDonald, W. C., Trier, J. S., and Everett, N. B., 1965, Cell proliferation and migration in the stomach, duodenum and rectum of man: Radio autographic studies, Gastroenterology 46: 405.Google Scholar
  164. Magnus, I. S., Jarrett, A., Prankerd, T. A. J., and Rimington, C., 1961, Erythropoietic protoporphyria: A new porphyria syndrome with solar urticaria due to protoporphyrinemia, Lancet 2: 448.PubMedGoogle Scholar
  165. Mahler, H. R., and Cordes, E. H., 1971, Biological Chemistry, 2nd ed., Harper and Row, New York.Google Scholar
  166. Marks, P. A., 1958, Red cell glucose-6-phosphate and 6-phosphogluconic dehydrogenases and nucleoside phosphorylase, Science 127: 1338.PubMedGoogle Scholar
  167. Marsh, C. A., and Gourlay, G. C., 1971, Evidence for a non-lysosomal α-mannosidase in rat liver homogenates, Biochim. Biophys. Acta 235: 142.PubMedGoogle Scholar
  168. Masson, P. L., and Heremans, J. F., 1968, Metal combining properties of human lactoferrin—the involvement of bicarbonate in the reaction, Eur. J. Biochem. 6: 579.PubMedGoogle Scholar
  169. Masson, P. L., Heremans, J. F., and Schonne, E., 1969, Lactoferrin, an iron-binding protein in neutrophilic leukocytes, J. Exp. Med. 130: 643.PubMedGoogle Scholar
  170. Masters, C., and Holmes, R., 1977, Peroxisomes: New aspects of cell physiology and biochemistry, Physiol. Rev. 57: 816.PubMedGoogle Scholar
  171. McCord, J. M., and Fridovich, I., 1978, The biology and pathology of oxygen radicals, Ann. Intern. Med. 89: 122.PubMedGoogle Scholar
  172. McDaniel, C. F., Kirtley, M. E., and Tanner, M. J. A., 1974, The interaction of glyceraldehyde 3-phosphate dehydrogenase with human erythrocyte membranes, J. Biol. Chem. 249: 6478.PubMedGoogle Scholar
  173. McDonagh, A. F., 1976, Photochemistry and photometabolism of bilirubin IXα, Birth Defects: Original Article Series 12: 30.Google Scholar
  174. McDonald, M. J., Shapiro, R., Bleichman, M., Solway, J., and Bunn, H. F., 1978, Glycosylated minor components of human adult hemoglobin, J. Biol. Chem. 253: 2327.PubMedGoogle Scholar
  175. Mehler, A. H., 1956, Formation of picolinic and quinolinic acids following enzymatic oxidations of 3-hydroxyanthranilic acid, J. Biol. Chem. 218: 241.PubMedGoogle Scholar
  176. Messier, B., and Leblond, C. P., 1960, Cell proliferation and migration as revealed by autoradiography after injection of thymidine-H3 into male rats and mice. Am. J. Anat. 106: 247.PubMedGoogle Scholar
  177. Metzger, B., Helmreich, E., and Glaser, L., 1967, The mechanism of activation of skeletal muscle phosphorylase A by glycogen, Proc. Natl. Acad. Sci. USA 57: 994.PubMedGoogle Scholar
  178. Metzler, D. E., 1977, Biochemistry. The Chemical Reactions of Living Cells, Academic Press, New York.Google Scholar
  179. Mieyal, J. J., and Blumer, J. L., 1976, Acceleration of the autooxidation of human oxyhemoglobin by aniline and its relation to hemoglobin-catalyzed aniline hydroxylation, J. Biol. Chem. 251: 3442.PubMedGoogle Scholar
  180. Mikkelsen, R. B., Tang, D. H., and Triplett, E. L., 1975, Photochemical activation of Rana pipiens tyrosinase, Biochem. Biophys. Res. Commun. 63: 980.PubMedGoogle Scholar
  181. Milligan, L. P., and Baldwin, R. L., 1967, The conversion of acetoacetate to pyruvaldehyde, J. Biol. Chem. 242: 1095.PubMedGoogle Scholar
  182. Minato, S., and Werbin, H., 1971, Spectral properties of the chromophoric material associated with the deoxyribonucleic acid photo reactivating enzyme isolated from baker’s yeast, Biochemistry 10: 4503.PubMedGoogle Scholar
  183. Mittal, C. K., and Murad, F., 1977, Activation of guanylate cyclase by superoxide dismutase and hydroxy radical: A physiological regulator of guanosine 3’,5’-monophosphate formation, Proc. Natl. Acad. Sci. USA 74: 4360.PubMedGoogle Scholar
  184. Morimoto, H., Lehmann, H., and Perutz, M. F., 1971, Molecular pathology of human haemoglobin: Stereochemical interpretation of abnormal oxygen affinities, Nature 232: 408.PubMedGoogle Scholar
  185. Muensing, R. A., Lornitzo, F. A., Kumar, S., and Porter, J. W., 1975, Factors affecting the reassociation and reactivatinn of the half-molecular weight nonidentical subunits of pigeon liver fatty acid synthetase, J. Biol. Chem. 250: 1814.Google Scholar
  186. Milller-Eberhard, U., 1970, Hemopexin, N. Engl. J. Med. 283: 1090.Google Scholar
  187. Musajo, L., Spada, A., and Bulgarelli, E., 1950, Synthesis of o-nitrobenzoyl-pyruvatic acid and its catalytic reduction, Gazz. Chim. Ital. 80: 161.Google Scholar
  188. Nelson, D. P., Miller, W. D., and Kiesow, L. A., 1974, Calorimetric studies of hemoglobin function, the binding of 2,3-dip hosphoglycerate and inositol hexaphosphate to human hemoglobin A, J. Biol. Chem. 249: 4770.PubMedGoogle Scholar
  189. Neurath, H., and Walsh, K. A., 1976, Role of proteolytic enzymes in biological regulation (a review), Proc. Natl. Acad. Sci. USA 73: 3825.PubMedGoogle Scholar
  190. Newman, S. A., Rossi, G., and Metzger, H., 1977, Molecular weight and valence of the cell-surface receptor for immunoglobulin E, Proc. Natl. Acad. Sci. USA 74: 869.PubMedGoogle Scholar
  191. Niemeyer, H., Ureta, T., and Clark-Turri, L., 1975, Adaptive character of liver glucokinase, Mol. Cell. Biochem. 6: 109.PubMedGoogle Scholar
  192. Nordlie, R. C., 1974, Metabolic regulation by multifunctional glucose-6-phosphatase, Curr. Top. Cell. Regul. 8: 33.PubMedGoogle Scholar
  193. Ogasawara, N., Goto, H., and Watanabe, T., 1975, Isozymes of rat brain deaminase: Developmental changes and characterizations of five forms, FEBS Lett. 58: 245.PubMedGoogle Scholar
  194. Ogasawara, N., Goto, H., Yamada, Y., and Yoshino, M., 1977, Subunit structures of AMP deaminase isozymes in rat, Biochem. Biophys. Res. Commun. 79: 671.PubMedGoogle Scholar
  195. Ohba, H., Harano, T., and Omura, T., 1977, Presence of two different types of protein-disulfide isomerase on cytoplasmic and luminal surfaces of endoplasmic reticulum of rat liver cells, Biochem. Biophus. Res. Commun. 77: 830.Google Scholar
  196. Oppenheimer, J. H., 1968, Role of plasma proteins in the binding, distribution and metabolism of the thyroid hormones, N. Engl. J. Med. 278: 1153.PubMedGoogle Scholar
  197. Orgel, L. E., 1963, The maintenance of the accuracy of protein synthesis and its relevance to aging, Proc. Natl. Acad. Sci. USA 49: 517.PubMedGoogle Scholar
  198. Orgel, L. E., 1970, The maintenance of the accuracy of protein synthesis and its revelance to aging: A correction, Proc. Natl. Acad. Sci. USA 67: 1476.PubMedGoogle Scholar
  199. Orgel, L. E., 1973, Aging of clones of mammalian cells, Nature 243: 441.PubMedGoogle Scholar
  200. Osaki, S., Johnson, D. A., and Frieden, E., 1971, The mobilization of iron from the per-fused mammalian liver by a serum copper enzyme, ferroxidase I, J. Biol. Chem. 246: 3018.PubMedGoogle Scholar
  201. Ostroy, S. E., 1977, Rhodopsin and the visual process, Biochim. Biophys. Acta 463: 91.PubMedGoogle Scholar
  202. Ottaway, J. H., and Mowbray, 1977, The role of compartmentation in the control of glycolysis, Curr. Top. Cell. Regul. 12: 107.PubMedGoogle Scholar
  203. Owen, C. A., Jr., and Hazelrig, J. B., 1968, Copper deficiency and copper toxicity in the rat, Am. J. Physiol. 215: 334.PubMedGoogle Scholar
  204. Parisi, A. F., and Vallee, B. L., 1970, Isolation of a zinc α2-macro globulin from human serum, Biochemistry 9: 2421.PubMedGoogle Scholar
  205. Park, D. J. M., 1974, An algorithm for detecting nonsteady state moieties in steady state subnetworks, J. Theor. Biol. 48: 125.PubMedGoogle Scholar
  206. Park, D. J. M., 1975, SMISS, Stoichiometric matrix inversion for steady state metabolic networks, Comp. Programs in Biomed. 5: 46.Google Scholar
  207. Parshad, R., Sanford, K. K., Jones, G. M., and Tarone, R. E., 1978, Fluorescent light-induced chromosome damage and its prevention in mouse cells in culture, Proc. Natl. Acad. Sci. USA 75: 1830.PubMedGoogle Scholar
  208. Paukert, J. L., Straus, L. D’A., and Rabinowitz, J. C., 1976, Formylmethenyl-methylene-tetrahydrofolate synthetase-(combined). An ovine protein with multiple catalytic activities, J. Biol. Chem. 251: 5104.PubMedGoogle Scholar
  209. Peanasky, R. J., and Lardy, H. A., 1958, Bovine liver aldolase. I. Isolation, crystallization and some general properties, J. Biol. Chem. 233: 365.PubMedGoogle Scholar
  210. Peat, R., and Soderwall, A. L., 1972, Estrogen stimulated pathway changes and cold-inactivated enzymes, Physiol. Chem. Phys. 4: 295.PubMedGoogle Scholar
  211. Perutz, M. F., and Lehmann, H., 1968, Molecular pathology of human haemoglobin, Nature 219: 902.PubMedGoogle Scholar
  212. Peterka, E. S., Fusaro, R. M., and Goltz, R. W., 1965, Erythropoietic protoporphyria. II. Histological and histochemical studies of cutaneous lesions, Arch. Derm. 92: 357.PubMedGoogle Scholar
  213. Peters, T., Jr., 1975, Serum albumin in: The Plasma Proteins, Structure, Function and Genetic Control, Vol. 1 (F. W. Putnam, ed.), pp. 133–181, Academic Press, New York.Google Scholar
  214. Phillips, A. T., and Wood, W. A., 1964, Basis for AMP activation of “biodegradative” threonine dehydrase from Escherichia coli, Biochem. Biophys. Res. Commun. 15:530.Google Scholar
  215. Phillips, D. R., Duley, J. A., Fennell, D. J., and Holmes, R. S., 1976, The self-association of L-α-hydroxyacid oxidase, Biochim. Biophys. Acta 427: 679.PubMedGoogle Scholar
  216. Poillon, W. N., and Bearn, A. G., 1967, The molecular structure of human ceruloplasmin: Evidence for subunits, Biochim. Biophys. Acta 127: 407.Google Scholar
  217. Polonovski, M., and Jayle, M. F., 1938, Existence dans le plasma sanguin d’une substance activant Faction peroxydasique de 1’hemoglobine, C. R. Seances Soc. Biol. Fil. 129: 457.Google Scholar
  218. Power, H. W., 1975, A model of how the sickle-cell gene produces malaria resistance, J. Theor. Biol. 50: 121.PubMedGoogle Scholar
  219. Purich, D. L., and Fromm, H. J., 1972, A possible role for kinetic reaction mechanism dependent substrate and product effects in enzyme regulation, Curr. Top. Cell. Regul. 6: 131.Google Scholar
  220. Quevedo, W. C., Jr., and Smith, J. A., 1963, Studies on radiation-induced tanning of skin, Ann. N. Y. Acad. Sci. 100: 364.PubMedGoogle Scholar
  221. Qureshi, A. A., Lornitzo, F. A., and Porter, J. W., 1974, The isolation of acyl carrier protein from the pigeon liver fatty acid synthetase complex II, Biochem. Biophys. Res. Commun. 60: 158.PubMedGoogle Scholar
  222. Rachmilewitz, E. A., 1974, Denaturation of the normal and abnormal hemoglobin molecule, Semin. Hematol. 11: 441.PubMedGoogle Scholar
  223. Raghavan, S. R. V., and Gonick, H. C., 1977, Isolation of low-molecular-weight lead-binding protein from human erythrocytes, Proc. Soc. Exp. Biol. Med. 155: 164.PubMedGoogle Scholar
  224. Rapoport, T. A., Heinrich, R., and Rapoport, S. M., 1976, The regulatory principles of glycolysis in erythrocytes in vivo and in vitro. A minimal comprehensive model describing steady states, quasi-steady states and time-dependent processes, Biochem. J. 154: 449.PubMedGoogle Scholar
  225. Ratner, S., 1973, Enzymes of arginine and urea synthesis, Adv. Enzymol. 39: 1.PubMedGoogle Scholar
  226. Reed, L. J., and Cox, D. J., 1966, Macromolecular organization of enzyme systems, Annu. Rev. Biochem. 35: 57.Google Scholar
  227. Rees, D. A., 1975, Stereochemistry and binding behaviour of carbohydrate chains, MTP Int. Rev. Sci. Biochem. Ser. 1, 5: 1.Google Scholar
  228. Richards, M. P., and Cousins, R. J. 1977, Isolation of an intestinal metallothionein induced by parenteral zinc, Biochem. Biophys. Res. Commun. 75: 286.PubMedGoogle Scholar
  229. Richart, R. M., 1963, A radio autographic analysis of cellular proliferation in dysplasia and carcinoma in situ of the uterine cervix, Am. J. Obstet. Gynecol. 86: 925.PubMedGoogle Scholar
  230. Riggs, A., and Gibson, Q. H., 1973, Oxygen equilibrium and kinetics of isolated subunits from hemoglobin Kansas, Proc. Natl. Acad. Sci. USA 70: 1718.PubMedGoogle Scholar
  231. Rose, I. R., and Warms, J. V. B., 1967, Mitochondrial hexokinase. Release, rebinding, and location, J. Biol. Chem. 242: 1635.PubMedGoogle Scholar
  232. Rubin, C. S., Balis, M. E., Piomelli, S., Berman, P. H., and Dancis, J., 1969, Elevated AMP pyrophosphorylase activity in congenital IMP pyrophosphorylase deficiency (Lesch-Nyhan disease), J. Lab. Clin. Med. 74: 732.PubMedGoogle Scholar
  233. Ruchti, J., and McLaren, A. D., 1965, Enzyme reactions in structurally restricted systems. VI. Activity of hexokinase on surfaces, Enzymologia 28: 201.PubMedGoogle Scholar
  234. Rucker, R. B., and Murray, J., 1978, Cross-linking amino acids in collagen and elastin, Am. J. Clin. Nutr. 31: 1221.PubMedGoogle Scholar
  235. Saari, J. C., and Futterman, S., 1976, Separable binding proteins for retinoic acid and retinol in bovine retina, Biochim. Biophys, Acta 444: 789.Google Scholar
  236. Sankar, D. V. S., 1959, Enzymatic activity of ceruloplasmin, Fed. Proc. 18: 441.Google Scholar
  237. Sasazuki, T., Tsunoo, H., Nakajima, H., and Imai, K., 1974, Interaction of human hemoglobin with haptoglobin or antihemoglobin antibody, J. Biol. Chem. 249: 2441.PubMedGoogle Scholar
  238. Sass, M. D., Vorsanger, E., and Spear, P. W., 1964, Enzyme activity as an indicator of red cell age, Clin. Chim. Acta 10: 21.PubMedGoogle Scholar
  239. Scallen, T. J., Seetharam, B., Srikantaiah, M. V., Hansbury, E., and Lewis, M. K., 1975, Sterol carrier hypothesis: Requirement for three substrate-specific soluble proteins in liver cholesterol biosynthesis, Life Sci. 16: 853.PubMedGoogle Scholar
  240. Schade, A. L., and Caroline, L., 1944, Raw hen egg white and the role of iron in growth inhibition of Shigella dysenteriae, Staphylococcus aureus, Escherichia coli and Saccharomyces cerevisiae, Science 100: 14.Google Scholar
  241. Schade, A. L., and Caroline, L., 1946, An iron-binding component in human blood plasma, Science 104: 340.Google Scholar
  242. Scheiner, S., and Kern, C. W., 1978, Energies of polypeptides: Theoretical conformational study of polyglycine using quantum mechanical partitioning, Proc. Natl. Acad. Sci. USA 75: 2071.PubMedGoogle Scholar
  243. Schimke, R. T., 1975, Protein synthesis and degradation in animal tissue, MTP Int. Rev. Sci. Biochem. Ser. 1, 9: 183.Google Scholar
  244. Schneider, R. G., Ueda, S., Alperin, J. B., Brimhall, B., and Jones R. T., 1969, Hemoglobin Sabine ß 91(F7) Leu → Pro. An unstable variant causing severe anemia with inclusion bodies, N. Engl. J. Med. 280: 739.PubMedGoogle Scholar
  245. Schothorst, A. A., Van Steveninck, J., Went, L. N., and Suurmond, D., 1970, Protoporphyrin-induced photohemolysis in protoporphyria and in normal red blood cells, Clin. Chim. Acta 28: 41.PubMedGoogle Scholar
  246. Schwartz, R. M., and Dayhoff, M. O., 1978, Origins of prokaryotes, eukaryotes, mitochondria, and chloroplasts, Science 199: 395.PubMedGoogle Scholar
  247. Schwartz, S. M., and Benditt, E. P., 1976, Clustering of replicating cells in aortic endothelium, Proc. Natl. Acad. Sci. USA 73: 651.PubMedGoogle Scholar
  248. Sel’kov, E. E., 1975, Stabilization of energy charge, generation of oscillations and multiple steady states in energy metabolism as a result of purely stoichiometric regulation, Eur. J. Biochem. 59: 151.PubMedGoogle Scholar
  249. Setlow, R. B., 1968, The photochemistry, photobiology, and repair of polynucleotides, Prog. Nucleic Acid Res. Mol. Biol. 8: 257.PubMedGoogle Scholar
  250. Shin, B. C., and Carraway, K. L., 1973, Association of glyceraldehyde 3-phosphate dehydrogenase with the human erythrocyte membrane, J. Biol. Chem. 248: 1436.PubMedGoogle Scholar
  251. Shorter, R. G., Moertel, C. G., Titus, J. L., and Reitemeier, R. J., 1964, Cell kinetics in the jejunum and rectum of man, Am. J. Dig. Dis. 9: 760.PubMedGoogle Scholar
  252. Shoup, V. A., and Touster, O., 1976, Purification and characterization of the α-D-man-nosidase of rat liver cytosol, J. Biol. Chem. 251: 3845.PubMedGoogle Scholar
  253. Sophianopoulos, A. J., and Vestling, C. S., 1960, Nature of the two forms of malic dehydrogenase from rat liver, Biochem. Biophys. Acta 45: 400.Google Scholar
  254. Spector, A. A., John, K., and Fletcher, J. E., 1969, Binding of long-chain fatty acids to bovine serum albumin, J. Lipid Res. 10: 56.PubMedGoogle Scholar
  255. Srikantaiah, M. V., Hansbury, E., Loughran, E. D., and Scallen, T. J., 1976, Purification and properties of sterol carrier protein, J. Biol. Chem. 251: 5496.PubMedGoogle Scholar
  256. Stadtman, E. R., and Chock, P. B., 1977, Superiority of interconvertible enzyme cascades in metabolic regulation: Analysis of monocyclic systems, Proc. Natl. Acad. Sci. USA 74: 2761.PubMedGoogle Scholar
  257. Stellwagen, E., 1978, Haem exposure as the determinate of oxidation-reduction potential of haem proteins, Nature 275: 73.PubMedGoogle Scholar
  258. Stellwagen, E., and Cass, R. D., 1975, Complexation of iron hexacyanides by cytochrome c. Evidence for electron exchange at the exposed heme edge, J. Biol. Chem. 250:2095. Stellwagen, E., and Wilgus, H.,1978, Relationship of protein thermostability to accessible surface area, Nature 275: 342.Google Scholar
  259. Sternberg, M. J. E., and Thornton, J. M., 1978, Prediction of protein structure from amino acid sequence, Nature 271: 15.PubMedGoogle Scholar
  260. Stoops, J. K., Arslanian, M. J., Oh, Y. H., Aune, K. C., Vanaman, T. C., and Wakil, S. J., 1975, Presence of two polypeptide chains comprising fatty acid synthetase, Proc. Natl. Acad. Sci. USA 72: 1940.PubMedGoogle Scholar
  261. Strittmatter, P., and Velick, S. F., 1956, A microsomal cytochrome reductase specific for diphosphopyridine nucleotide, J. Biol. Chem. 221: 277.PubMedGoogle Scholar
  262. Sutherland, B. M., Chamberlin, M. J., and Sutherland, J. C., 1973, Deoxyribonucleic acid photo reactivating enzyme from Escherichia coli. Purification and properties, J. Biol. Chem. 248: 4200.PubMedGoogle Scholar
  263. Sutherland, B. M., Runge, P., and Sutherland, J. C., 1974, DNA photoreactivating enzyme from placental mammals. Origin and characteristics, Biochemistry 13: 4710.PubMedGoogle Scholar
  264. Sutton, H. E., 1970, The haptoglobins, Prog. Med. Genet. 7: 163.PubMedGoogle Scholar
  265. Svasti, J., and Bowman, B. H., 1978, Human group-specific component, J. Biol. Chem. 253: 4188.PubMedGoogle Scholar
  266. Swartz, S. K., Soloff, M. S., and Suriano, J. B., 1974, Binding of estrogens by α-fetoprotein in rat amniotic fluid, Biochim. Biophys. Acta 388: 480.Google Scholar
  267. Tanabe, T., Wada, K., Okazaki, T., and Numa, S., 1975, Acetyl-coenzyme-A carboxylase from rat liver, Eur. J. Biochem. 57: 15.PubMedGoogle Scholar
  268. Tanford, C., 1973, The Hydrophobic Effect: Formation of Micelles and Biological Membranes, Wiley, New York.Google Scholar
  269. Tanford, C., 1978, The hydrophobic effect and the organization of living matter, Science 200: 1012.PubMedGoogle Scholar
  270. Tang, J., James, M. N. G., Hsu, I. N., Jenkins, J. A., and Blundell, T. L., 1978, Structural evidence for gene duplication in the evolution of the acid proteases, Nature 271: 618.PubMedGoogle Scholar
  271. Taylor, B. L., Frey, W. H., II, Barder, R. E., Scrutton, M. C., and Utter, M. F., 1978, The use of the ultracentrifuge to determine the catalytically competent forms of enzymes with more than one oligomeric structure, J. Biol. Chem. 253: 3062.PubMedGoogle Scholar
  272. Taylor, C., Cox, A. J., Kernohan, J. C., and Cohen, P., 1975, Debranching enzyme from rabbit skeletal muscle. Purification, properties and physiological role, Eur. J. Biochem. 51: 105.PubMedGoogle Scholar
  273. Tomino, S., and Paigen, K., 1975, Egasyn, a protein complexed with microsomal ß-glu-curonidase, J. Biol. Chem. 250: 1146.Google Scholar
  274. Tomoda, A., Matsukawa, S., Takeshita, M., and Yoneyama, Y., 1976, Effect of organic phosphates on methemoglobin reduction by ascorbic acid, J. Biol. Chem. 251: 1794.Google Scholar
  275. Tsai, H. C., and Norman, A. W., 1973, Studies on calciferol metabolism. VIII. Evidence for a cytoplasmic receptor for 1,25-dihydroxy-vitamin D3 in the intestinal mucosa, J. Biol. Chem. 248: 5967.PubMedGoogle Scholar
  276. Tschudy, D. P., and Bonkowsky, H. L., 1973, A steady state model of sequential irreversible enzyme reactions. Mol. Cell. Biochem. 2: 55.PubMedGoogle Scholar
  277. Turner, B. M., Fisher, R. A., and Harris, H., 1975, Post-translational alterations of human erythrocyte enzymes, in: Isozymes. Molecular Structure, Vol 1 ( C. I. Markert, ed.), pp. 781–795, Academic Press, New York.Google Scholar
  278. Ulevitch, R. J., Cochrane, C. G., Revak, S. D., Morrison, D. C., and Johnston, A. R., 1975, The structural and enzymatic properties of the components of the Hageman factoractivated pathways, in: Proteases and Biological Control ( Reich, E., Rifkin, D. B., and Shaw, E., eds.), pp. 85–93, Cold Spring Harbor, New York.Google Scholar
  279. Vaitukaitis, J. L., 1976, Peptide hormones as tumor markers, Cancer (Suppl. 1) 37: 567.Google Scholar
  280. Varghese, A. J., 1972, Photochemistry of nucleic acids and their constituents, Photophysiology 7: 207.PubMedGoogle Scholar
  281. Vendrely, R., and Vendrely, C., 1956, The results of cytophotometry in the study of deoxyribonucleic acid (DNA) content of the nucleus, Int. Rev. Cytol. 5: 171.Google Scholar
  282. Verma, I. M., 1977, The reverse transcriptase, Biochim. Biophys. Acta 473: 1.PubMedGoogle Scholar
  283. Verseé, V. C., and Barel, A. O., 1978, Spectroscopic evidence of binding properties of rat α-fetoprotein, Fed. Proc. 37: 1620.Google Scholar
  284. Vestling, C. S., 1942, The reduction of methemoglobin by ascorbic acid, J. Biol. Chem. 143: 439.Google Scholar
  285. Volpe, J. J., and Vagelos, P. R., 1973, Saturated fatty acid biosynthesis and its regulation, Annu. Rev. Biochem. 42: 21.PubMedGoogle Scholar
  286. von Bertalanffy, L., 1950, The theory of open systems in physics and biology, Science 111: 23.Google Scholar
  287. Wallach, D., Davies, P. J. A., and Pastan, I., 1978, Cyclic AMP-dependent phosphorylation of filamin in mammalian smooth muscle, J. Biol. Chem. 253: 4739.PubMedGoogle Scholar
  288. Walser, M., 1961, Ion Association VI. Interactions between calcium, magnesium, inorganic phosphate, citrate and protein in normal human plasma, J. Clin. Invest. 40: 723.PubMedGoogle Scholar
  289. Walter, H., and Selby, F. W., 1966, Counter-current distribution of red blood cells of slightly different ages, Biochim. Biophys. Acta 112: 146.PubMedGoogle Scholar
  290. Wang, A.-C., and Sutton, H. E., 1965, Human transferrins C and D1: Chemical difference in a peptide, Science 149: 435.PubMedGoogle Scholar
  291. Waterman, M. R., and Cottam, G. L., 1976, Kinetics of the polymerization of hemoglobin S: Studies below normal erythrocyte hemoglobin concentration, Biochem. Biophys. Res. Commun. 73: 639.PubMedGoogle Scholar
  292. Whanger, P. D., Phillips, A. T., Rabinowitz, K. W., Piperno, J. R., Shada, J. D., and Wood, W. A., 1968, The mechanism of action of 5’-adenylic acid-activated threonine dehydrase. II. Protomer-oligomer interconversions and related properties, J. Biol. Chem. 243: 167.PubMedGoogle Scholar
  293. Wheeler, G. W., and Bitensky, M. W., 1977, A light-activated GTPase in vertebrate photoreceptors: Regulation of light-activated cyclic GMP phosphodiesterase, Proc. Natl. Acad. Sci. USA 74: 4238.PubMedGoogle Scholar
  294. White R. C., and Nelson, T. E., 1975, Analytical gel chromatography of rabbit muscle amylo-1,6-glucosidase/4-α-gluconotransferase under denaturing and nondenaturing conditions, Biochim. Biophys. Acta 400: 154.PubMedGoogle Scholar
  295. Widner, W. R., Storer, J. B., and Lushbaugh, C. C., 1951, The use of X-ray and nitrogen mustard to determine the mitotic and intermitotic time in normal and malignant rat tissues, Cancer Res. 11: 877.PubMedGoogle Scholar
  296. Wilson, A. C., Carlson, S. S., and White, T. J., 1977, Biochemical evolution, Annu. Rev. Biochem. 46: 573.PubMedGoogle Scholar
  297. Winterbourn, C. C., and Carrell, R. W., 1974, Studies of hemoglobin denaturation and Heinz body formation in the unstable hemoglobins, J. Clin. Invest. 54: 678.PubMedGoogle Scholar
  298. Wittenberg, J. B., 1970, Myoglobin-facilitated oxygen diffusion: Role of myoglobin in oxygen entry into muscle, Physiol. Rev. 50: 559.PubMedGoogle Scholar
  299. Yoshida, A., 1973, Hemolytic anemia and G6PD deficiency, Science 179: 532.PubMedGoogle Scholar
  300. Zamierowski, M. M., and Wagner, C., 1977, Identification of folate binding proteins in rat liver, J. Biol. Chem. 252: 933.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Robert H. Herman
    • 1
  1. 1.Endocrine-Metabolic ServiceLetterman Army Medical CenterPresidio of San FranciscoUSA

Personalised recommendations