Effect of Optical Potentials on Angular Correlation Parameters

  • D. H. Madison

Abstract

Angular correlation parameters and differential cross sections are calculated in the distorted-wave approximation for 40–200-eV electron impact excitation of the 2′P state of helium. Initial- and final-channel distorted waves are calculated as eigenfunctions of a complex optical potential. The optical potential consists of a static Hartree-Fock atomic potential, a polarization potential term, an exchange distortion term, and an imaginary term representing electron absorption into other open channels. The appropriate inelastic scattering T matrix is obtained for non-Hermitian operators. Effects of polarization, exchange, and absorption are examined individually and collectively and the results are compared with experimental data.

Keywords

Helium Coherence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Eminyan, K. B. MacAdam, J. Slevin, and H. Kleinpoppen, Phys. Rev. Lett. 31, 576–579 (1973); Phys. B 7, 1519–1542 (1974).ADSCrossRefGoogle Scholar
  2. 2.
    M. Eminyan, H. Kleinpoppen, J. Slevin, and M. C. Standage, in Electron and Photon Interactions with Atoms, H. Kleinpoppen and M. R. C. McDowell, eds., pp. 455–483, Plenum, New YorkGoogle Scholar
  3. 3.
    M. Eminyan, K. B. MacAdam, J. Slevin, M. C. Standage, and H. Kleinpoppen, J. Phys. B 8, 2058–2066 (1975).ADSCrossRefGoogle Scholar
  4. 4.
    M. C. Standage and H. Kleinpoppen, Phys. Rev. Lett. 36, 577–580 (1976).ADSCrossRefGoogle Scholar
  5. 5.
    A. Ugbabe, P. J. O. Teubner, E. Weigold, and H. Arriola, J. Phys. B 10, 71–79 (1977).ADSCrossRefGoogle Scholar
  6. 6.
    K. H. Tan, J. Fryar, P. S. Farago, and J. W. McConkey, J. Phys. B 10, 1073–1082 (1977).ADSCrossRefGoogle Scholar
  7. 7.
    V. C. Sutcliffe, G. N. Haddad, N. C. Steph, and D. E. Golden, Phys. Rev. A 10, 100–107 (1978).ADSCrossRefGoogle Scholar
  8. 8.
    B. H. Bransden and M. R. C. McDowell, Phys. Rep. 30C, 207–303 (1977).ADSCrossRefGoogle Scholar
  9. 9.
    D. H. Madison and W. N. Shelton, Phys. Rev. A 7, 499–513 (1973).ADSCrossRefGoogle Scholar
  10. 10.
    J. B. Furness and I. E. McCarthy, J. Phys. B 6, 2280–2291 (1973).ADSCrossRefGoogle Scholar
  11. 11.
    F. W. Byron and C. J. Joachain, Phys. Lett. A 49, 306–308 (1974); Phys. Rev. A 15, 128–146 (1977).ADSCrossRefGoogle Scholar
  12. 12.
    R. Vanderpoorten, J. Phys. B 8, 926–939 (1975).ADSCrossRefGoogle Scholar
  13. 13.
    M. E. Riley and D. G. Truhlar, J. Chem. Phys. 63, 2182–2191 (1975).ADSCrossRefGoogle Scholar
  14. 14.
    B. H. Bransden, M. R. C. McDowell, C. J. Noble, and T. Scott, J. Phys. B 9, 1301–1317 (1976).ADSCrossRefGoogle Scholar
  15. 15.
    C. J. Joachain, R. Vanderpoorten, K. H. Winters, and F. W. Byron, J. Phys. B 10, 227–238 (1977).ADSCrossRefGoogle Scholar
  16. 16.
    I. E. McCarthy, C. J. Noble, B. A. Phillips, and A. D. Turnbull, Phys. Rev. A 15, 2173–2185 (1977).ADSCrossRefGoogle Scholar
  17. 17.
    M. R. H. Rudge, J. Phys. B 10, 2451–2457 (1977).ADSCrossRefGoogle Scholar
  18. 18.
    K. L. Baluja, M. R. C. McDowell, L. A. Morgan, and V. R. Myerscough, J. Phys. B 11, 715–726 (1978).ADSCrossRefGoogle Scholar
  19. 19.
    B. H. Bransden and K. H. Winters, J. Phys. B 8, 1236–1244 (1975).ADSCrossRefGoogle Scholar
  20. 20.
    C. Froese Fischer, Comput. Phys. Commun. 4, 107–116(1972).Google Scholar
  21. 21.
    A. Temkin and J. C. Lamkin, Phys. Rev. 121, 788–794 (1961).ADSCrossRefGoogle Scholar
  22. 22.
    R. Vanderpoorten and K. Winters, J. Phys. B 12, 473–488 (1979).ADSCrossRefGoogle Scholar
  23. 23.
    L. D. Thomas, G. Csanak, H. S. Taylor, and B. S. Yarlagadda, J. Phys. B 7, 1719–1733 (1974).ADSCrossRefGoogle Scholar
  24. 24.
    K. H. Winters, J. Phys. B 11, 149–165 (1978).ADSCrossRefGoogle Scholar
  25. 25.
    N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions, 3rd ed., Clarendon Press, Oxford (1965).Google Scholar
  26. 26.
    R. V. Calhoun, D. H. Madison, and W. N. Shelton, Phys. Rev. A 14, 1380–1387 (1976); R. V. Calhoun, D. H. Madison, and W. N. Shelton, J. Phys. B 10, 3523–3533 (1977).ADSCrossRefGoogle Scholar
  27. 27.
    D. G. Truhlar, S. Trajmar, W. Williams, S. Ormonde, and B. Torres, Phys. Rev. A 8, 2475–2482 (1973).ADSCrossRefGoogle Scholar
  28. 28.
    R. I. Hall, G. Joyez, J. Mazeau, J. Reinhardt, and C. Schermann, J. Phys. (Paris) 34, 827–843 (1973).CrossRefGoogle Scholar
  29. 29.
    A. Chutjian and S. K. Srivastava, J. Phys. B 8, 2360–2368 (1975).ADSCrossRefGoogle Scholar
  30. 30.
    C. B. Opal and E. C. Beaty, J. Phys. B 5, 627–635 (1972).ADSCrossRefGoogle Scholar
  31. 31.
    D. G. Truhlar, J. K. Rice, A. Kupperman, S. Trajmar, and D. C. Cartwright, Phys. Rev. A 1, 778–802 (1970).ADSCrossRefGoogle Scholar
  32. 32.
    H. Suzuki and T. Takayanagi, Abstracts VIII ICPEAC (Beograd), pp. 286–287 (1973).Google Scholar
  33. 33.
    M. A. Dillon and E. N. Lassettre, J. Chem. Phys. 62, 2373–2390 (1975).ADSCrossRefGoogle Scholar
  34. 34.
    L. Vriens, J. A. Simpson, and S. R. Mielczarek, Phys. Rev. 165, 7–15 (1968).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • D. H. Madison
    • 1
  1. 1.Drake UniversityDes MoinesUSA

Personalised recommendations