31P N.M.R. Studies of Catalytic Systems Containing Rhodium Complexes of Chelating Diphosphines

  • D. A. Slack
  • I. Greveling
  • M. C. Baird


Enantioselective chemical reactions have been of considerable interest for many years (1). A relatively recent facet of research in this area is the use of chiral metal complexes to effect reductions of prochiral substrates, in particular hydrogenation and hydrosilylation of prochiral olefins (2–4). Following the general appreciation of Wilkinson’s catalyst, RhCl(PPh3)3, as a useful olefin hydrogenation catalyst (5), many attempts were made to utilize complexes of chiral phosphines for the catalytic preparation of optically active compounds. Some experiments, involving chirality at either the phosphorus or the alkyl groups of monodentate phosphines, i. e.


Optical Yield Rhodium Complex Diphosphine Ligand Trans Influence Enantioselective Chemical Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. 1.
    J. D. Morrison and H. S. Mosher, “Asymmetric Organic Reactions”, Prentice-Hall, Englewood Cliffs, NJ, L971.Google Scholar
  2. 2.
    L. Marko and B. Heil, Catal. Rev., 8, 269 (1973).CrossRefGoogle Scholar
  3. 3.
    H. B. Kagan, Pure Appl. Chem., 43, 401 (1975).CrossRefGoogle Scholar
  4. 4.
    J. D. Morrison, W. F. Masler and M. K. Neuberg, Adv. Catalysis, 25, 81 (1976).CrossRefGoogle Scholar
  5. 5.
    J. A. Osborn, F. H. Jardine, J. F. Young and G. Wilkinson, J. Chem. Soc. (A), 1711 (1966).Google Scholar
  6. 6.
    W. S. Knowles and M. Sabacky, Chem. Commun., 1445 (1968).Google Scholar
  7. 7.
    A. M. Aguiar, C. J. Morrow, J. D. Morrison, R. E. Burnett, W. F. Masler and N. S. Bhacca, J. Org. Chem., 41, 1545 (1976).CrossRefGoogle Scholar
  8. 8.
    H. B. Kagan and T. P. Dang, J. Amer. Chem. Soc., 94, 6429 (1972).CrossRefGoogle Scholar
  9. 9.
    T. P. Dang, J. -C. Poulin and H. B. Kagan, J. Organometal. Chem., 91, 105 (1965).CrossRefGoogle Scholar
  10. 10.
    R. Glaser, M. Twaik, S. Geresh and J. Blumenfeld, Tetrahedron Lett., 4635 (1977).Google Scholar
  11. 11.
    B. D. Vineyard, W. S. Knowles, M. J. Sabacky, G. L. Bachman and D. J. Weinkauff, J. Amer. Chem. Soc., 99, 5946 (1977).CrossRefGoogle Scholar
  12. 12.
    M. D. Fryzuk and B. Bosnich, J. Amer. Chem. Soc., 99, 6262.Google Scholar
  13. 13.
    M. D. Fryzuk and B. Bosnich, J. Amer. Chem. Soc., 100, 5491.Google Scholar
  14. 14.
    D. A. Slack, D. L. Egglestone and M. C. Baird, J. Organometal. Chem., 146, 71 (1978), and references therein.Google Scholar
  15. 15.
    R. R. Schrock and J. A. Osborn, J. Amer. Chem. Soc., 93, 2397 (1971).CrossRefGoogle Scholar
  16. 16.
    R. R. Schrock and J. A. Osborn, J. Amer. Chem. Soc., 98, 2134 (1976).CrossRefGoogle Scholar
  17. 17.
    J. Halpern, D. P. Riley, A.S.C. Chen and J. J. Pluth, J. Amer. Chem. Soc., 99, 8055 (1977).CrossRefGoogle Scholar
  18. 18.
    J. Vilim and J. Hetflejs, Coll. Czech. Chem. Comm., 43, 122 (1978).Google Scholar
  19. 19.
    J. M. Brown and P. A. Chaloner, Chem. Commun., 321 (1978).Google Scholar
  20. 20.
    J. M. Brown and P. A. Chaloner, Tetrahedron Lett., 1877 (1978).Google Scholar
  21. 21.
    See J. F. Nixon and A. Pidcock, Ann. Rev. NMR Spectroscopy, 2, 345 (1969). Different phosphines in any series of otherwise identical complexes exhibit very different 3lP chemical shifts and, when applicable, metal-phosphorus coupling constants.Google Scholar
  22. 22.
    For the complexes under consideration here, an increase in a 31P chemical shift is to lower field (2206positive).Google Scholar
  23. 23.
    C. A. Tolman, P. Z. Meakin, D. L. Lindner and J. P. Jesson, J. Amer. Chem. Soc., 96, 2762 (1974).CrossRefGoogle Scholar
  24. 24.
    T. H. Brown and P. J. Green, J. Amer. Chem. Soc., 92, 2359 (1970).CrossRefGoogle Scholar
  25. 25.
    B. E. Mann, C. Masters and B. L. Shaw, J. Chem. Soc. (A), 1104 (1971); J. C. S. Dalton, 704 (1972).Google Scholar
  26. 26.
    S. 0. Grim and L. C. Satek, J. Coord. Chem., 3 307 (1974).Google Scholar
  27. 27.
    A. R. Sanger, J. C. S. Dalton, 120 (1977).Google Scholar
  28. 28.
    The ring contribution, 2206R, has been defined as the difference between the coordination shift, 2206(29), of a cis-disubstituted biphosphine complex and 2206 for a similar diphosphine in a chelate complex (30).Google Scholar
  29. 29.
    The coordination shift, 2206, is the difference in chemical shifts between free and coordinated phosphine (25).Google Scholar
  30. 30.
    P. E. Garrou, Inorgan. Chem., 14, 1435 (1975).CrossRefGoogle Scholar
  31. 31.
    R values for five-, six- and seven-membered rings are typically -25 to -55 ppm, +2 to +13 ppm and ~1 ppm, respectively (30, 32).Google Scholar
  32. 32.
    D. A. Slack and M. C. Baird, Inorg. Chim. Acta., 24, 277 (1977). There are typographical errors in Table IV of this paper. Values of ∆R are as follows: PtCl2dppe (-27.8), PtCl2dppp (+14.2), PtEt2dppe (-24.8), PtEt2dppp (+12.6), PtEt2dppb (+1. 4 ).Google Scholar
  33. 33.
    The chemical shifts and coupling constants, when compared with data for complexes described later in this paper, are most consistent with structures in which the phosphorus atoms are trans to chloride. See also ref. 23 for similar data and conclusions for triarylphosphine complexes of rhodium(I).Google Scholar
  34. 34.
    The ethylene of Zeise’s salt exhibits a very high trans effect. See M. Herberhold, “Metal II Complexes”, Vol. II, Part I, Elsevier, New York, 1972, p. 177.Google Scholar
  35. 35.
    The decrease in J(Rh-P) is consistent with an increase in coordination number (21). Low temperature nmr studies on the chloro system, to see if rapid exchange between free and bound chloride is occurring, were not carried out.Google Scholar
  36. 36.
    It seems likely that methanol would exhibit a rather low trans influence.Google Scholar
  37. 37.
    Such chelation has been observed in the crystal structure of the cationic dppe complex (J. Halpern, private communication).Google Scholar
  38. 38.
    It is expected that the trans influence of an amide group would be much less than that of an olefin.Google Scholar
  39. 39.
    R. J. Burns, P. B. Bulkowski, S. C. V. Stevens and M. C. Baird, J.C.S. Dalton, 415 (1974).Google Scholar
  40. 40.
    K. Stanley, R. A. Zelonka, J. Thomson, P. Fiess and M. C. Baird, Can. J. Chem., 52, 1781 (1974).CrossRefGoogle Scholar
  41. 41.
    R. G. Ball and N. C. Payne, Inorg. Chem., 16, 1187 (1977).CrossRefGoogle Scholar
  42. 42.
    J. P. Lowe, Prog. Phys. Org. Chem., 6, 1 (1968).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • D. A. Slack
    • 1
  • I. Greveling
    • 1
  • M. C. Baird
    • 1
  1. 1.Department of ChemistryQueen’s UniversityKingstonCanada

Personalised recommendations