Advertisement

Underlying Mathematical Structures of Classical Gravitation Theory

  • Brandon Carter
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 44)

Abstract

If I had been asked five years or so ago to prepare a course on recent developments in classical gravitation theory, I would not have hesitated in choosing the classical theory of black holes as a central topic of discussion. However the most important developments in gravitation theory during the last three or four years have not been in the classical domain at all but rather in the problems of quantisation of—or in—curved space-time. Associated with these developments (partly as a cause and partly as a consequence) has been a strong trend towards integration of gravitation theory with the main stream of theoretical physics, from which it had hitherto been rather isolated. The mahayana of this unification has been the generalised theory of gauge fields, which has made spectacular progress on the testing ground of weak interactions. Under these circumstances it seemed that instead of concentrating on the comparatively minor and specialised developments that have in fact recently taken place in the classical domain, it would be more appropriate for the present school to provide an introductory review of the general principles of classical gauge theory as a solid foundation underlying the more genuinely recent — and therefore quantum — developments to be described in subsequent courses.

Keywords

Mathematical Structure Bianchi Identity Connection Form Parameter Subgroup Gravitation Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Bibliography

  1. E. M. Corson: Introduction to tensors Spinors and Relativistic Wave Equations, Blackie, Glasgow, 1973.Google Scholar
  2. Y. Choquet-Bruhat, C. Morette-Dewitt, M.Bleik-Dillard: Physical Mathematics — Analysis on Manifolds, North Holland, Amsterdam, 1977.Google Scholar
  3. B. S. Dewitt: Les Houches Lectures, in Relativity, Groups and Topology, Gordon and Breach, New York 1964.Google Scholar
  4. GF.R. Ellis: Cargese Summer School Lectures, in General Relativity and Cosmology, Academic Press 1971.Google Scholar
  5. W. Greub, S. Halperin, R. Vanstone: Connections, Curvature and Cohomology, Vol II, Academic Press, New York 1973.Google Scholar
  6. S.W. Hawking, G.F.R. Ellis: The large Scale Structure of Space-Time Cambridge U.P., 1973.CrossRefGoogle Scholar
  7. N.J. Hicks: Notes on Differential Geometry, Van Nostrand Reinhold Co, London, 1971.Google Scholar
  8. C. Itzykson, J.B. Zuber: Electrodynamique et Theorie Quantique des Champs, Service de Physique Théorique, Centre d’Etudes Nucléaires de Saclay, 91190 Gif sur Yvette, 1978.Google Scholar
  9. S. Kobyashi,K. Nomizu: Foundations of Differential Geometry, Vol II, Interscience, New York, 1969.Google Scholar
  10. A. Lichnerowicz: Les Houches Lectures, in Relativity, Groups and Topology, Gordon and Breach, New York 1964.Google Scholar
  11. J.W. Milnor, J.D. Stasheff: Characteristic Classes, Princeton U.P., New Jersey, 1974.MATHGoogle Scholar
  12. C.W. Misner, K.S. Thorne, J.A. Wheeler: Gravitation, Freeman, San Francisco, 1973.Google Scholar
  13. F. A.E. Pirani: Brandeis Summer School Lectures, in Lectures on Theoretical Physics, Prentice Hall, New Jersey,1965.Google Scholar
  14. J.A. Schouten: Ricci Calculus, Springer Verlag, Heidelberg, 1954.MATHGoogle Scholar
  15. R.F. Streater and A.S. Wightman, PCT, Spin and Statistics, and All That, Benjamin, New York, 1964.Google Scholar
  16. A. Trautman: Brandeis Summer School Lectures, in Lectures on Theoretical Physics, Prentice Hall, New Jersey, 1965.Google Scholar
  17. A. Trautman, On the Structure of the Einstein-Cartan Equations, Istituto Nazionale di Alta Matematica, Symposia Mathematica, Vol X II, 1973.Google Scholar
  18. M. Veltman: Quantum Theory of Gravity, in Proceedings of 1975, Les Houches Summer School, ed R.Balian, J.Zinn-Justin, North Holland 1976.Google Scholar

References

  1. J. Thierry-Mieg (1978) Geometrical Reinterpretation of the Fadeev Popov, Ghosts and BRS transformation, preprint, Obs. de Paris, 92190 Meudon.Google Scholar
  2. C. J. Isham (1978), Proc.Roy.Soc. A362, 383.MathSciNetADSCrossRefGoogle Scholar
  3. R. Debever (1964) Cahier de Physique 168, 303.MathSciNetGoogle Scholar
  4. M. Cahen, R. Debever, L. Defrise (1976) J. Math, and Mechanics, 16, 761.MathSciNetGoogle Scholar
  5. R. Debever (1976) Bull. CI. Sci. Acad. Roy. Bel. LXII, 662.MathSciNetGoogle Scholar
  6. R. Penrose (1960) Ann. Phys. (New York) 10, 171.MathSciNetADSMATHCrossRefGoogle Scholar
  7. E.T. Newman and R. Penrose (1962) J. Math. Phys.3, 566.MathSciNetADSCrossRefGoogle Scholar
  8. R. Penrose (1968) in Battelle Rencontre, ed. C. Dewitt and J.A. Weeler, Benjamin, New York.Google Scholar
  9. R. Geroch (1968) J. Math. Phys. 9 1739. (1970) J. Math. Phys. 21 243.Google Scholar
  10. S.W. Hawking and N.J. Pope (1978) preprint, D.A.M.T.P., Cambridge.Google Scholar
  11. S. Chandrasekkar (1976) Proc. Roy. Soc. A 349, 571.ADSCrossRefGoogle Scholar
  12. D. N. Page (1976) Phys. Rev. D 14, 1509.ADSGoogle Scholar
  13. R. Guren (1977) Proc.Roy. Soc.A356, 465.ADSCrossRefGoogle Scholar
  14. B. Carter (1977) Phys. Rev. D16, 3395.MathSciNetADSGoogle Scholar
  15. Y. Kosman (1972) Ann. di Mat. Pura ed Appl. IV 91, 317.CrossRefGoogle Scholar
  16. B. Carter and R. Mc Lenaghan (1978), preprint, Observatoire de Paris, Meudon.Google Scholar
  17. R. Me Lenaghan and Ph. Spindel (1978) preprint, Dept de mathematique, U.L.B.Bruxelles.Google Scholar
  18. R. Penrose and MAH McCallum (1972), Physics Reports, 6, 241.ADSCrossRefGoogle Scholar
  19. B. Carter (1968) Phys. Rev. 174, 1559.ADSMATHCrossRefGoogle Scholar
  20. R. Penrose (1963), Ann.New York Acad. Sci. 224, 125.Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Brandon Carter
    • 1
  1. 1.Groupe d’Astrophysique RelativisteObservatoire de ParisMeudonFrance

Personalised recommendations