Lectures in Supergravity Theory

  • P. van Nieuwenhuizen
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 44)

Abstract

Supergravity 1–3 is general relativity with an extra symmetry: Fermi-Bose symmetry, also called supersymmetry. In field theories in curved space, this symmetry must be local. Conversely, local Fermi-Bose symmetry can only be realized by field theories in curved spacetime. This explains the name supergravity.

Keywords

Ghost 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Z. Freedman, P. vanNieuwenhuizen and S. Ferrara, Phys. Rev. D13, 23214 (1976).ADSGoogle Scholar
  2. 2.
    S. Deser and B. Zumino, Phys. Lett. 62B, 335 (1976).MathSciNetGoogle Scholar
  3. 3.
    D.Z. Freedman and P. van Nieuwenhuizen, Phys. Rev. D14, 912 (1976).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    S. Ferrara and P. van Nieuwenhuizen, Phys. Lett. 76B, 404 (1978).MathSciNetGoogle Scholar
  5. 5.
    Idem, Phys. Lett. 78B 573 (1978).Google Scholar
  6. 6.
    K. Stelle and P.C.West, Phys. Lett. 77B, 376 (1978).Google Scholar
  7. 7.
    S. Ferrara and P. van Nieuwenhuizen, Phys. Lett. 74B, 333 (1978).Google Scholar
  8. 8.
    K. Stelle and P. C. West, Phys. Lett. 74B, 331 (1978).Google Scholar
  9. 9.
    P. van Nieuwenhuizen, Phys.Report, to be published.Google Scholar
  10. 10.
    D.Z.Freedman and P. van Nieuwenhuizen, February issue 1978.Google Scholar
  11. 11.
    A list can be found in S. Ferrara, CERN preprint Th-2514.Google Scholar
  12. 12.
    0(2) model: S.Ferrara and P. van Nieuwenhuizen, Phys. Rev. Letters 37, 1669 (1976). 0(3) model: D.Z.Freedman, Phys. Rev. Lett. 38, 105 (1977) and S. Ferrara, J. Scherk and B. Zumino, Phys. Lett. 66B, 35 (1977). 0(4) model: E. Cremmer and J. Scherk, Nucl. Phys. B127, 259 (1978) E. Cremmer, S. Ferrara and J. Scherk, Phys. Lett. B74, 61 (1978). 0(8) model: E. Cremmer and B. Julia, Ecole Normale preprint, September 1978.Google Scholar
  13. 13.
    M. Kaku, P. K. Townsend and P. van Nieuwenhuizen, Phys. Lett. 69B, 304 (1977), Phys. Rev. Lett. 39, 1109 (1977), Phys. Rev. D 17, 3179 (1978).MathSciNetGoogle Scholar
  14. 14.
    S. Ferrara and B. Zumino, Nucl. Phys. B134, 301 (1978) For superspace see the lectures by Dr. B. Zumino or A. Salam and J. Strathdee, Phys. Rev. D11, 1521 (1975).Google Scholar
  15. 15.
    P. Breitenlohner, Phys. Lett. 67B, 49 (1977) and Nucl. Phys. B124, 500 (1977).Google Scholar
  16. B. de Wit and Mc T. Grisaru, Phys. Lett. 74B, 57 (1978).Google Scholar
  17. S. Ferrara, J. Scherk and P. van Nieuwenhuizen, Nucl. Phys. B117, 17333 (1977).ADSCrossRefGoogle Scholar
  18. 17.
    P. K. Townsend and P. van Nieuwenhuizen, to be published.Google Scholar
  19. 18.
    P. K. Townsend, Phys. Rev. D15, 2802 (1977).MathSciNetADSGoogle Scholar
  20. 19.
    P. Breitenlohner, S. Ferrara, D.Z.Freedman, F. Gliozzi, J. Scherk, P. van Nieuwenhuizen, Phys. Rev. D15, 1013 (1977).Google Scholar
  21. 20.
    If Ca is not given by Aa, more extra terms are needed (see ref. (17).)Google Scholar
  22. 21.
    B. Zumino, private communication.Google Scholar
  23. 22.
    M. Rocek, private communication.Google Scholar
  24. 23.
    S. Ferrara, J. Scherk and P. van Nieuwenhuizen, Phys. Rev. Lett. 37 2, 1035 (1976)MathSciNetADSCrossRefGoogle Scholar
  25. 24.
    M. Kaku and P.K.Townsend, Phys. Lett. 76B, 54 (1978).MathSciNetGoogle Scholar
  26. 25.
    G. Sterman, P.K.Townsend and P. van Nieuwenhuizen, Phys. Rev. D17, 261501 (1978).Google Scholar
  27. 26.
    BRS-invariance in supergravity has been discussed in ref (25) and P.K.Townsend and P. van Nieuwenhuizen, Nucl. Phys. B120, 301 (1977) R. Kallosh, Zh. ETF Pis’ma 26, 575 (1978) K. Stelle and P.C.West, Nucl. B140, 285 ( 1978 ). B. de Wit and J. van Holten, Physics Letters, to be published.Google Scholar
  28. 27.
    M.T.Grisaru, P. van Nieuwenhuizen and J.Z.M.Vermaseren, Phys. Rev. Lett. 37, 1662 (1976).MathSciNetADSCrossRefGoogle Scholar
  29. 28.
    M.T.Grisaru, Phys. Lett. 66B, (1977).Google Scholar
  30. 29.
    E. Tomboulis, Phys. Lett. 67B, 417 (1977).Google Scholar
  31. 30.
    S. Deser, J. Kay and K. Stelle, Phys. Rev. Lett. 38, 527 (1977).ADSCrossRefGoogle Scholar
  32. 31.
    One- and two-loop of 0(n) theories have been verified by explicit calculations and by proofs using either helicity arguments or Noether-type constructions.30 At the three-loop level, the existence of a Bel-Robinson type invariant in 0(2) and 0(3) theory has been shown up to order Ψ2 (S. Deser, J. Kay, Phys. Lett. 76B (1978) 400Google Scholar
  33. 32.
    C.C.Wu.and P. van Nieuwenhuizen, J.Math. Phys. 18, 182 (1977)Google Scholar
  34. 33.
    V.I Ogievetski and E.Sokatchev, J. Phys. A10, 2021 (1977).ADSCrossRefGoogle Scholar
  35. 34.
    M. Sohnius,Karlsruhe thesis (1976)on global supersymmetry.Google Scholar
  36. 35.
    E. Cremmer, S. Ferrara, L. Girardello, B. Julia, J. Scherk, P. van Nieuwenhuizen, Phys. Lett. B and CERN preprint.Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • P. van Nieuwenhuizen
    • 1
  1. 1.Institute for Theoretical PhysicsState University of New York at Stony BrookLong Island, New YorkUSA

Personalised recommendations