Resonance-Averaged (n,γ) Spectra and their Applications to Nuclear Structure

  • C. W. Reich

Abstract

Because they populate final states without regard to the details of the nucleonic configurations, neutron-capture γ rays are ideally suited for locating essentially all the low-lying nuclear states whose spins lie within a few units of that of the capturing state. With the reduction of the Porter-Thomas fluctuations through the use of neutrons having an energy distribution broad enough to average over a finite (and large) number of capture resonances, the primary capture γ -ray intensities can provide rather definite spin-parity information for those states which they are observed to populate. The power of these studies is greatly enhanced through the analysis of such resonance-averaged spectra at two distinct neutron energies, ~ 2 and ~ 24 keV, obtained from Sc and Fe neutron “filters”, respectively. In this paper, the use of resonance-averaged primary γ -ray spectra as a tool for low-energy nuclear spectroscopy is discussed and its strengths and limitations pointed out. Examples are drawn from studies of 2- and 24-keV neutron capture in samples of 154, 156, 157, 158Gd and 238U.

Keywords

Nite IAEA Plague Kroger 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    “Neutron Capture Gamma-Ray Spectroscopy”, Proceedings of the International Symposium on Neutron Capture Gamma-Ray Spectroscopy, Studsvik, 11–15 August, 1969 ( IAEA, Vienna, 1969 ).Google Scholar
  2. 2.
    “Neutron Capture Gamma-Ray Spectroscopy”, Proceedings of the Second International Symposium on Neutron Capture Gamma Ray Spectroscopy and Related Topics, September 2–6, 1974, Petten, the Netherlands (Reactor Centrum Nederland, the Netherlands, 1975).Google Scholar
  3. 3.
    L. M. Bollinger and G. E. Thomas, Phys. Rev. C 2, 1951 (1970).ADSCrossRefGoogle Scholar
  4. 4.
    O. D. Simpson and L. G. Miller, Nucl. Instr. and Meth. 61, 245 (1968), and U. S. AEC Report IN-1218 (1968).ADSCrossRefGoogle Scholar
  5. 5.
    R. C. Greenwood and R. E. Chrien, Nucl. Instr. and Meth. 138, 125 (1976).ADSCrossRefGoogle Scholar
  6. 6.
    M. E. Bunker and C. W. Reich, Revs. Mod. Phys. 43, 348 (1971).ADSCrossRefGoogle Scholar
  7. 7.
    R. R. Chasman, I. Ahmad, A. M. Friedman and J. R. Erskine, Revs. Mod. Phys. 49, 833 (1977).ADSCrossRefGoogle Scholar
  8. 8.
    R. E. Chrien, G. W. Cole, J. L. Holm and O. A. Wasson, Phys. Rev. C 9, 1622 (1974).ADSCrossRefGoogle Scholar
  9. 9.
    R. C. Greenwood, in Ref. 2, above, pp 323–340.Google Scholar
  10. 10.
    Nuclear Data Sheets 9, 273 (1973).Google Scholar
  11. 11.
    R. C. Greenwood, C. W. Reich, H. A. Baader, H. R. Koch, D. Breitig, O.W.B. Schult, B. Fogelberg, A. Bäcklin, W. Mampe, T. von Egidy and K. Schreckenbach, Nucl. Phys. A304, 327 (1978).CrossRefGoogle Scholar
  12. 12.
    R. A. Meyer, R. Gunnink, C. M. Lederer and E. Browne, Phys. Rev. C 13, 2466 (1976).ADSCrossRefGoogle Scholar
  13. 13.
    M. E. Bunker and C. W. Reich, Phys. Letters 25B, 396 (1967).ADSCrossRefGoogle Scholar
  14. 14.
    H. G. Börner, H. R. Koch, H. Seyfarth, T. von Egidy, W. A. Mampe, J. A. Pinston, K. Schreckenbach and D. Heck, Z. Physik A 286, 31 (1978).ADSCrossRefGoogle Scholar
  15. 15.
    R. E. Chrien, M. L. Stelts, H. I. Liou, C. W. Reich and S. S. Malik, Bull. Am. Phys. Soc. 23, No. 1, 92 (1978).Google Scholar
  16. 16.
    J. R. Erskine, Phys. Rev. C 17, 934 (1978).ADSCrossRefGoogle Scholar
  17. 17.
    G. Alaga, K. Alder, A. Bohr and B. R. Mottelson, Mat. Fys. Medd. Dan. Vid. Selsk. 29, No. 9 (1955).Google Scholar
  18. 18.
    L. A. Kroger and C. W. Reich, Nucl. Phys. A259, 29 (1976).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • C. W. Reich
    • 1
  1. 1.Idaho National Engineering LaboratoryEG&G Idaho, Inc.Idaho FallsUSA

Personalised recommendations