Advertisement

Some Recent Developments in Nuclear Models

  • Igal Talmi

Abstract

The shell model has been very effective in calculating states of simple configurations. For more complex cases it cannot be used unless a good truncation or coupling scheme is introduced. Such coupling scheme should give a fair description of low-lying levels and in particular of those of collective nature. For semi-magic nuclei a reasonable coupling scheme is that of generalized seniority. A certain set of valence proton states (and a similar one for valence neutrons) can be defined by considering the J=0 and J=2 identical nucleon pairs of generalized seniority. This set of proton states corresponds to states obtained by coupling Sp (with L=0) and dp (with L=2) proton bosons (and similarly for the neutrons). A quadrupole-quadrupole interaction between protons and neutrons can be diagonalized to a good approximation by truncation to the space defined by coupling those proton and neutron sets. Using the corresponding boson states and an equivalent boson Hamiltonian it is possible to reduce the complex shell model problem to a much simpler one. This way a shell model approach is obtained to the very exciting interacting boson model which has been recently introduced.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    F. Iachello in Proc. 1974 Amsterdam Conf. on Nucl. Struct, and Spectroscopy (Scholar’s Press, Amsterdam 1974) p. 163.Google Scholar
  2. 2).
    A. Arima and F. Iachello, Phys. Rev. Lett. 35 (1975) 1069; Ann. of Phys. 99 (1976) 253, and Ann. of Phys. (In press).ADSCrossRefGoogle Scholar
  3. 3).
    A. Arima, T. Ohtsuka, F. Iachello and I. Talmi, Phys. Lett. 66B (1977) 205 and Phys. Lett. 76B (1978) 139.ADSGoogle Scholar
  4. 4).
    A. Bohr, Mat. Fys. Medd., Dan Vid. Selsk. 26, No. 14 (1952). A. Bohr and B.R. Mottelson, Mat. Fys. Medd., Dan Vid. Selsk. 27, No. 16 (1953).MathSciNetGoogle Scholar
  5. 5).
    See e.g. Effective Interactions and Operators in Nuclei, B. R. Barrett ed., Springer Lecture Notes in Physics 40, 1975.Google Scholar
  6. 6).
    A summary of this approach is given by I. Talmi, Rev. Mod. Phys 34 (1962) 704.Google Scholar
  7. 7).
    See e.g. A. de-Shalit and I. Talmi, Nuclear Shell Theory, Academic Press, N.Y. (1963).Google Scholar
  8. 8).
    S. Goldstein and I. Talmi, Phys. Rev. 102 (1956) 589. S.P. Pandya, Phys. Rev. 103 (1956) 956.ADSCrossRefGoogle Scholar
  9. 9).
    I. Talmi and I. Unna, Phys. Rev. Lett. 4 (1960) 469.ADSCrossRefGoogle Scholar
  10. 10).
    N. Auerbach and I. Talmi, Phys. Lett. 9 (1964) 153 and Nucl. Phys. 64 (1965) 458. K.H. Bhatt and J.B. Ball, Nucl. Phys. 63 (1965) 286. J. Vervier, Nucl. Phys. 75 (1966) 17.Google Scholar
  11. 11).
    I. Talmi, Phys. Rev. 126 (1962) 2116.ADSCrossRefGoogle Scholar
  12. 12).
    I. Bergström, B. Fant, C.J. Herrlander, P. Thieberger, K. Wikström and C. Astner, Phys. Lett. 32B (1970) 476.ADSGoogle Scholar
  13. 13).
    I. Talmi, Nucl. Phys. A178 (1971) 1. S. Shlomo and I. Talmi, Nucl. Phys. A198 (1972) 81. I. Talmi, Rivista Nuovo Cimento 3 (1973) 85.ADSGoogle Scholar
  14. 14).
    O. Scholten (to be published.)Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Igal Talmi
    • 1
  1. 1.Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations