Coupled-Wave Devices

  • Herwig Kogelnik
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 41)


A scan of recent reviews of integrated optics1–4 or of a recent text book on this subject5, makes it apparent that coupled-wave devices play a major role in this new technology. The reason for this is that optical effects of interest are usually small over distances of the order of a wavelength. Coupled-wave phenomena extend over many wavelengths and can lead to a considerable enhancement of these effects. In integrated optics we encounter a large variety of coupled-wave phenomena and devices. In the following we propose to discuss a selection of these, including directional couplers, switched directional couplers, stepped Δβ couplers, bistable Δβ couplers, tunable coupler filters, the tunable Harris filter, electrooptic Bragg deflectors, acousto-optic Bragg deflectors, TE-TM mode converters, corrugated waveguide filters, distributed Bragg reflector lasers and distributed feedback lasers. The theoretical basis for the treatment of coupled-wave phenomena is the coupled-wave formalism which is summarized in References 6 and 7 and which is reviewed in this symposium by A. Yariv. This formalism provides expressions for the coupling constants of various devices which we will use for our discussion.


Directional Coupler Interaction Length Integrate Optic Bragg Condition Corrugate Waveguide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. K. Tien, Rev. Mod. Phys, b9, 361, April, 1977ADSCrossRefGoogle Scholar
  2. 2.
    A. Yariv and M. Nakamura, IEEE J. Quantum Electronics, QE-13, April, 1977.Google Scholar
  3. 3.
    H. Kogelnik, Fibers and Integrated Optics, 1, 227, 1978.ADSCrossRefGoogle Scholar
  4. 4.
    H. Kogelnik, IEEE Transactions MTT-23, 2, January, 1975-Google Scholar
  5. 5.
    Integrated Optics, T. Tamir Editor, Springer, Berlin, 1975.Google Scholar
  6. 6.
    A. Yariv, IEEE J. Quantum Electronics, QE-9, 919, September, 1973.ADSCrossRefGoogle Scholar
  7. 7.
    H. Kogelnik, in Integrated Optics, T. Tamir ed., Springer, Berlin, 1975.Google Scholar
  8. 8.
    E. A. J. Marcatili, Bell Syst. Techn. J. 48, 2071, September, 1969.Google Scholar
  9. 9.
    J. M. Hammer, in Integrated Optics, T. Tamir ed., Springer, Berlin, 1975.Google Scholar
  10. 10.
    M. Papuchon et al, Appi. Phys. Lett. 27, 289, September, 1975.ADSCrossRefGoogle Scholar
  11. 11.
    H. Kogelnik and R. V. Schmidt, IEEE J. Quantum Electronics, QE-12, July, 1976.Google Scholar
  12. 12.
    R. V. Schmidt and H. Kogelnik, Appi. Phys. Lett. 28, 503, May, 1976.ADSCrossRefGoogle Scholar
  13. 13.
    R. V. Schmidt and L. L. Buhl, Electronics Lett. 12, 575 October, 1976.ADSCrossRefGoogle Scholar
  14. 14.
    F. J. Leonberger and C. O. Bozler, Appi. Phys. Lett. 31, 223, 1977.ADSCrossRefGoogle Scholar
  15. 15.
    J. C. Shelton, F. K. Reinhart and R. A. Logan, IEEE Trans. EP-24, 1198, 1977.Google Scholar
  16. 16.
    R. V. Schmidt and P. S. Cross, Optics Letters 2, 45, February, 1978.ADSCrossRefGoogle Scholar
  17. 17.
    P. S. Cross, R. V. Schmidt, R. L. Thornton and P. W. Smith, IEEE J. Quantum Electronics, August, 1978.Google Scholar
  18. 18.
    R. C. Alferness and R. V. Schmidt, Appl. Phys. Lett., July, 1978.Google Scholar
  19. 19.
    H. F. Taylor, Optics Communications 8, 421, August, 1973.ADSCrossRefGoogle Scholar
  20. 20.
    H. Kogelnik, Bell Syst. Tech. J. 48, 2909, November, 1969.Google Scholar
  21. 21.
    R. V. Schmidt, IEEE Trans. Sonics and Ultrasonics SU-23, 22, January, 1976.Google Scholar
  22. 22.
    S. E. Harris and R. W. Wallace, J. Opt. Soc. Am. 59, 744, 1969.ADSCrossRefGoogle Scholar
  23. 23.
    Y. Ohmachi, Electronics Lett. 9, 541, November, 1973.CrossRefGoogle Scholar
  24. 24.
    H. Hayashi and Y. Fujii, IOOC’77, Tokyo, Japan, 1977.Google Scholar
  25. 25.
    C. S. Tsai et al., IOOC’77, Tokyo, Japan, 1977.Google Scholar
  26. 26.
    D. C. Flanders et al, Appl. Phys. Lett. 24, 194, 1977.ADSCrossRefGoogle Scholar
  27. 27.
    H. Kogelnik, Bell Syst. Techn. J. 55, 109, January, 1976.Google Scholar
  28. 28.
    M. Matsuhara, K. O. Hill and A. Watanabe, J. Opt. Soc. Am. 65, 804, July, 1975.ADSCrossRefGoogle Scholar
  29. 29.
    P. Cross and H. Kogelnik, Optics Lett. 1, 143, July, 1977.Google Scholar
  30. 30.
    C. S. Hong et al, Appl. Phys. Lett. 31, 276, August, 1977.ADSCrossRefGoogle Scholar
  31. 31.
    S. Wang, J. Quantum Electronics QE-10, 43, 1977.Google Scholar
  32. 32.
    F. K. Reinhart, R. A. Logan and C. V. Shank, Appl. Phys. Lett. 27, 45, 1975.ADSCrossRefGoogle Scholar
  33. 33.
    H. Kogelnik and C. V. Shank, J. Appl. Phys. 43, 2327, May, 1972.Google Scholar
  34. 34.
    M. Nakamura et al, Appl. Phys. Lett. 27, 403, 1975.ADSCrossRefGoogle Scholar
  35. 35.
    H. C. Casey, S. Somekh and M. Illgems, Appl. Phys. Lett. 27, 143, 1976.Google Scholar
  36. 36.
    J. McKenna and F. K. Reinhart, J. Appl. Phys. 47, 2069, May, 1976.Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Herwig Kogelnik
    • 1
  1. 1.Bell LaboratoriesHolmdelUSA

Personalised recommendations