The Neurochemical Basis of Acetylcholine Precursor Loading as a Therapeutic Strategy

  • D. J. Jenden

Abstract

With the recognition that deficits in central cholinergic function may play a role in several pathological states (Davis et al., 1975b; Van Woert, 1976; Weiss et al., 1976; Aquilonius, 1977; Davis et al., 1977a; Drachman, 1977; Eckernas, 1977; Jenden, 1977a; Barbeau, 1978; Davis and Berger, 1978; Davis et al., 1978b), increasing attention has been directed to the possibility that administration of metabolic precursors of acetylcholine (ACh) may promote its synthesis, availability and utilization. This therapeutic strategy is certainly effective in the treatment of disorders characterized by deficits in the synthesis and metabolism of other neurotransmitters, particularly dopamine (Barbeau, 1976; Growdon et al., 1977a). At present there is suggestive although not compelling evidence of causative associations between cholinergic deficits and several clinical illnesses. There is very little information regarding the possible mechanisms by which administration of ACh precursors favors the synthesis and utilization of ACh, and whether other less direct mechanisms underlie the therapeutic successes which have been reported. In this chapter the origins of the choline (Ch) and acetyl moieties will be reviewed, with particular reference to ACh synthesis in the brain and its regulation. The experimental, clinical and laboratory evidence of the impact of precursor loading will be examined and some of the more promising directions for future research in this area will be identified.

Keywords

Dopamine Morphine Pyruvate Neurol Deuterium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ansell, G.B., and Spanner, S., 1970, The origin and turnover of choline in the brain, in “Drugs and Cholinergic Mechanisms in the CNS” ( E. Heilbronn, and A. Winter, eds.), pp. 143–162, Res. Inst. Natl. Defence, Stockholm.Google Scholar
  2. Ansell, G.B., and Spanner, S., 1971, Studies on the origin of choline in the brain of the rat,Biochem. J. 122: 741.PubMedGoogle Scholar
  3. Ansell, G.B., and Spanner, S., 1977, The source of choline for acetylcholine synthesis, in “Cholinergic Mechanisms and Psychopharmacology” ( D.J. Jenden, ed.), pp. 431–445, Plenum Press, New York.Google Scholar
  4. Aquilonius, S.M., 1977, Role of acetylcholine in the central nervous system,in “Metabolic and Deficiency Diseases of the Nervous System Part III” (H.L. Klawans, ed.), pp. 435–458, North-Holland Publishing Company, New York.Google Scholar
  5. Aquilonius, S.M., and Eckernas, S.A., 1975, Plasma concentration of free choline in patients with Huntington’s chorea on high doses of choline chloride, N. Engl J. Med. 293: 1105.PubMedGoogle Scholar
  6. Aquilonius, S.M., and Eckernas, S.A., 1976a, Free choline (Ch) in plasma from healthy volunteers and patients on high oral doses of Ch, Acta Physiol. Scand. (Suppl)440: 114.Google Scholar
  7. Aquilonius, S.M., and Eckernas, S.A., 1976b, Choline acetyltransferase in human cerebrospinal fluid: non-enzymatically and enzymatically catalyzed acetylcholine synthesis, J. Neurochem. 27: 317.PubMedCrossRefGoogle Scholar
  8. Aquilonius, S.M., and Eckernas, S.A., 1977, Choline therapy in Huntington’s chorea, Neurology 27: 887.PubMedGoogle Scholar
  9. Aquilonius, S.M., and Winbladh, B., 1971, Cerebrospinal fluid clearance of choline, Acta Pharmacol Toxicol (Kbh.)29: 64.Google Scholar
  10. Aquilonius, S.M., Schuberth, J., and Sundwall, A., 1970, Choline in the cerebrospinal fluid as a marker for the release of acetylcholine, in “Drugs and Cholinergic Mechanisms in the CNS” ( E. Heilbronn, and A. Winter, eds.), pp. 399–407, Res. Inst. Natl. Defence, Stockholm.Google Scholar
  11. Aquilonius, S.M., Nystrom, B., Schuberth, J., and Sundwall, A., 1972, Cerebrospinal fluid choline in extrapyramidal disorders, J. Neurol Neurosurg. Psychiatry 35: 720.PubMedCrossRefGoogle Scholar
  12. Aquilonius, S.M., Ceder, G., Lying-Tunnell, U., Malmlund, H.O. and Schuberth, J., 1975, The arteriovenous difference of choline across the brain of man, Brain Res. 99: 430.PubMedCrossRefGoogle Scholar
  13. Barbeau, A., 1976, Six years of high level levodopa therapy in severely akinetic Parkinsonian patients, Arch. Neurol 33: 333.PubMedGoogle Scholar
  14. Barbeau, A., 1978, Emerging treatments: replacement therapy with choline or lecithin in neurological diseases, Can. J. Neurol Sci. 5: 157.PubMedGoogle Scholar
  15. Barker, L.A., 1976, Modulation of synaptosomal high affinity choline transport, Life Sci. 18: 725.PubMedCrossRefGoogle Scholar
  16. Barker, L.A., and Mittag, T.W., 1975, Comparative studies of substrates and inhibitors of choline transport and choline acetyltransferase, J. Pharmacol Exp. Ther. 192: 86.PubMedGoogle Scholar
  17. Berman, R., Wilson, I.B., and Nachmansohn, D., 1953, Choline acetylase specificity in relation to biological function, Biochim. Biophys. Acta 12: 315.PubMedCrossRefGoogle Scholar
  18. Bhatnagar, S.P., and Macintosh, F.C., 1967, Effects of quaternary bases and inorganic cations on acetylcholine synthesis in nervous tissue, Can. J. Physiol Pharmacol 45: 249.PubMedCrossRefGoogle Scholar
  19. Bird, E.D., and Iversen, L.L., 1974, Huntington’s chorea: postmortem measurement of glutonic acid decarboxylase, choline acetyltransferase and dopamine in basal ganglia, Brain 97: 457.PubMedCrossRefGoogle Scholar
  20. Birks, R., and Macintosh, F.C., 1961, Acetylcholine metabolism of a sympathetic ganglion, Can. J. Biochem. Physiol 59: 787.CrossRefGoogle Scholar
  21. Blass, J.P., and Gibson, G.E., 1977, Cholinergic systems and disorders of carbohydrate catabolism, in “Cholinergic Mechanisms and Psychopharmacology” ( D.J. Jenden, ed.), pp. 791–803, Plenum Press, New York.Google Scholar
  22. Blaustein, M.P., and Goldring, J.M., 1975, Membrane potentials in pinched-off presynaptic nerve terminals monitored with a fluorescent probe: evidence that synaptosomes have potassium diffusion potentials, J. Physiol (Lond.)247: 589.Google Scholar
  23. Bligh, J., 1952, The level of free choline in plasma, J. Physiol (Lond.) 117: 234.Google Scholar
  24. Bligh, J., 1953, The role of the liver and the kidneys in the maintenance of the level of free choline in plasma, J. Physiol (Lond.) 120: 53.Google Scholar
  25. Botticelli, L.J., Lytle, L.D., and Wurtman, R.J., 1977, Choline induced attenuation of morphine analgesia in the rat, Commun. Psychopharmacol. 1: 519.PubMedGoogle Scholar
  26. Boyd, W.D., Graham-White, J., Blackwood, G., Glen, I., and McQueen, J., 1977, Clinical effects of choline in Alzheimer senile dementia, Lancet 2: 711.PubMedCrossRefGoogle Scholar
  27. Browning, E.T., 1971, Free choline formation by cerebral cortical slices from rat brain, Biochem. Biophys. Res. Commun. 45: 1586.PubMedCrossRefGoogle Scholar
  28. Burt, A.M., and Silver, A., 1973, Non-enzymatic imidazole-catalyzed acetyl transfer reaction and acetylcholine synthesis,Nature (New Biol) 243: 157.Google Scholar
  29. Carson, V.G., Jenden, D.J., Cho, A.K., and Green, R., 1976, Effects of the choline acetyl transferase inhibitor 3’chloro-4-stilbazole, Biochem. Pharmacol 25: 195.PubMedCrossRefGoogle Scholar
  30. Cheney, D.L., Gubler, C.J., and Jaussi, A.W., 1969, Production of acetylcholine in rat brain following thiamine deprivation and treatment with thiamine antagonists, J. Neurochem. 16: 1283.CrossRefGoogle Scholar
  31. Cheney, D.L., Racagni, G., and Costa, E., 1976, Appendix II: Distribution of acetylcholine and choline acetyl transferase in specific nuclei and tracts of rat brain, in “Biology of Cholinergic Function” ( A.M. Goldberg, and I. Hanin, eds.), pp. 655–659, Raven Press, New York.Google Scholar
  32. Cheng, S.C., and Nakamura, R., 1970, A study on the tricarboxylic acid cycle and the synthesis of acetylcholine in the lobster nerve, Biochem. J. 118: 451.PubMedGoogle Scholar
  33. Cho, A.K., Jenden, D.J., and Lamb, S.I., 1972, Rates of alkaline hydrolysis and muscarinic activity of some amino acids and their quaternary ammonium analogs, J. Med. Chem. 15: 391.PubMedCrossRefGoogle Scholar
  34. Choi, R.L., Roch, M., and Jenden, D.J., 1973, A regional study of acetylcholine turnover in rat brain and the effect of oxotremorine, Proc. West. Pharmacol Soc. 16: 188.Google Scholar
  35. Choi, R.L., Freeman, J.J., and Jenden, D.J., 1975, Kinetics of plasma choline in relation to turnover of brain choline and formation of acetylcholine, J. Neurochem. 24: 135.CrossRefGoogle Scholar
  36. Cohen, E.L., and Wurtman, R.J., 1975, Brain acetylcholine: increase after systemic choline administration, Life Sci. 16: 1095.PubMedCrossRefGoogle Scholar
  37. Cohen, E.L., and Wurtman, R.J., 1976, Brain acetylcholine: control by dietary choline, Science 191: 561.PubMedCrossRefGoogle Scholar
  38. Collier, B., and Macintosh, F.C., 1969, The source of choline for acetylcholine synthesis in a sympathetic ganglion, Can. J. Physiol Pharmacol 47: 121.Google Scholar
  39. Consolo, S., Ladinsky, H., Bianchi, S., and Caraceni, T., 1977, The cerebrospinal fluid choline levels in patients with Huntington’s chorea, Arch. Psychiatr. Nervenkr. 223: 265.PubMedCrossRefGoogle Scholar
  40. Cooper, S.D., and Feuer, G., 1973, Effects of drugs or hepatotoxins on the relation between drug-metabolizing activity and phospholipids in hepatic microsomes during choline deficiency, Toxicol Appl. Pharmacol 25: 7.PubMedCrossRefGoogle Scholar
  41. Cornford, E.M., Braun, L.D., and Oldendorf, W.H., 1978, Carrier mediated blood-brain barrier transport of choline and certain choline analogs, J. Neurochem. 30: 299.PubMedCrossRefGoogle Scholar
  42. Dahlberg, L., and Schuberth, J., 1977, Regulation of plasma choline by base exchange, J. Neurochem. 29: 933.PubMedCrossRefGoogle Scholar
  43. Danysz, A., Kocmierska-Grodzka, D., Kostro, B., Polocki, B., and Kruszcuska, J., 1967, Pharmacological properties of 2-dimethylaminoethanol (bimanol-DMAE) Part II. An analysis of the pharmacological action of DMAE upon the CNS, Diss. Pharm. Pharmacol 19: 469.Google Scholar
  44. Davis, K.L., and Berger, P.A., 1978, Pharmacological investigations of the cholinergic imbalance hypotheses of movement disorders and psychosis, Biol Psychiatry 13: 23.PubMedGoogle Scholar
  45. Davis, K.L., Berger, P.A., and Hollister, L.E., 1975a, Choline for tardive dyskinesia, N. Engl J. Med. 293: 152.PubMedGoogle Scholar
  46. Davis, K.L., Hollister, L.E., Berger, P.A., and Barchas, J.D., 1975b, Cholinergic imbalance hypotheses of psychoses and movement disorders: strategies for evaluation, Psychopharmacol. Commun. 1: 533.PubMedGoogle Scholar
  47. Davis, K.L., Hollister, L.E., Barchas, J.D., and Berger, P.A., 1976, Choline in tardive dyskinesia and Huntington’s disease, Life Sci. 79: 1507.CrossRefGoogle Scholar
  48. Davis, K.L., Berger, P.A., and Hollister, L.E., 1977a, Cholinergic mechanisms in tardive dyskinesia and Huntington’s chorea, in “Neurotransmitter Function” ( W.S. Fields, ed.), pp. 247–262, Symposia Specialists Medical Books, New York.Google Scholar
  49. Davis, K.L., Berger, P.A., Hollister, L.E., DoAmaral, J.R., and Barchas, J.D., 1977b, Cholinergic dysfunction in mania and movement disorders, in “Cholinergic Mechanisms and Psychopharmacology” ( D.J. Jenden, ed.) pp. 755–779, Plenum Press, New York.Google Scholar
  50. Davis, K.L., Berger, P.A., Hollister, L.E., and Defraites, E., 1978, Physostigmine in mania, Arch. Gen. Psychiatry 55: 119.Google Scholar
  51. Davis, K.L., Berger, P.A., Hollister, L.E., and Defraites, E., 1978, Physostigmine in mania, Arch. Gen. Psychiatry 55: 119.Google Scholar
  52. de la Huerga, J., and Popper, H., 1951, Urinary excretion of choline metabolites following choline administration in normals and patients with hepatobiliary diseases, J. Clin. Invest. 30: 463.PubMedCrossRefGoogle Scholar
  53. Diamond, I., 1971, Choline metabolism in brain: the role of choline transport and the effects of phenobarbital, Arch. Neurol 24: 333.PubMedGoogle Scholar
  54. Di Pietro, D., and Weinhouse, S., 1959, Glucose oxidation in rat brain slices and homogenates, Arch. Biochem. Biophys. 80: 268.CrossRefGoogle Scholar
  55. Dormard, Y., Levron, J.C., and LeFur, J.M., 1975, Pharmacokinetic study of maleate acid of 2-(N,N-dimethylaminoethanol-14C1)-cyclohexylpropionate (cyprodenate) and of N,N-dimethylaminoethanol-14C1 in annals II. Study and identification of the metabolites of 14C-cyproclinate and 14C-dimethylaminoethanol in animals. Arzneim. Forsch. 25: 201.Google Scholar
  56. Drachman, D.A., 1977, Memory and cognitive function in man: does the cholinergic system have a specific role? Neurology 27: 783.PubMedGoogle Scholar
  57. Dreyfus, P., 1975, Identification de l’acetate comme precurseur du rocidal acetate de l’acetylcholine des junctions neuromusculaires du rat, Cr. Acad. Sci. Paris Ser. D 280: 1893.Google Scholar
  58. Dross, K., and Kewitz, H., 1972, Concentration and origin of choline in the rat brain, Naunyn Schmiedebergs Arch. Pharmacol 274: 91.PubMedCrossRefGoogle Scholar
  59. DuVigneaud, V., Chandler, J.P., Simmonds, S., Moyer, A.W., and Cohen, M., 1946, The role of dimethyl- and monoethylaminoethanol in transmethylating reactions in vivo, J. Biochem. 164: 603.Google Scholar
  60. Duvoisin, R.C., and Dettbarn, W.D., 1967, Cerebrospinal fluid acetylcholine in man, Neurology 77 : 1077.Google Scholar
  61. Eckernas, S.A., 1977, Plasma choline and cholinergic mechanisms in the brain: methods, function and role in Huntington’s chorea, Acta Physiol Scand. (Suppl) 449: 1.Google Scholar
  62. Eckernas, S.A., and Aquilonius, S.M., 1977, Free choline in human plasma analyzed by simple radio-enzymatic procedure: age distribution and effect of a meal, Scand. J. Clin. Lab. Invest. 37: 183.PubMedGoogle Scholar
  63. Eckernas, S.A., Sahlstrom, L., and Aquilonius, S.M., 1977, In vivo turnover rate of acetylcholine in rat brain parts at elevated steady-state concentration of plasma choline, Acta Physiol Scand. 101: 404.PubMedCrossRefGoogle Scholar
  64. Enna, S.J., Bird, E.D., Bennett, J.P., Bylund, D.B., Yamamura, H.I., Iversen, L.L., and Synder, S.H., 1976, Huntington’s chorea: changes in neurotransmitter receptors in the brain,TV. Engl J. Med. 94: 1305.CrossRefGoogle Scholar
  65. Fitzgerald, G.G., and Cooper, J.R., 1971, Acetylcholine as a possible sensory mediator in rabbit corneal epithelium, Biochem. Pharmacol. 20: 2741.PubMedCrossRefGoogle Scholar
  66. Fonnum, F., 1970, Subcellular localization of choline acetyltransferase, in “Drugs and Cholinergic Mechanisms in the CNS” (E. Heilbronn, and A. Winter, eds.), pp. 83–95, Res. Inst. Natl. Defence, Stockholm.Google Scholar
  67. Fonnum, F., 1973, Recent developments in biochemical investigations of cholinergic transmission, Brain Res. 62: 497.PubMedCrossRefGoogle Scholar
  68. Freeman, J.J., and Jenden, D.J., 1976, Minireview: the source of choline for acetylcholine synthesis in brain, Life Sci. 19: 949.PubMedCrossRefGoogle Scholar
  69. Freeman, J.J., Choi, R.L., and Jenden, D.J., 1975, Plasma choline: its turnover and exchange with brain choline, J. Neurochem. 24: 729.Google Scholar
  70. Gibson, G.E., and Blass, J.P., 1976a, Inhibition of acetylcholine synthesis and of carbohydrate utilization by maple-syrup urine disease metabolites, J. Neurochem. 26: 1013.CrossRefGoogle Scholar
  71. Gibson, G.E., and Blass, J.P., 1976b, Impaired synthesis of acetylcholine in brain accompanying mild hypoxia and hypoglycemia, J. Neurochem. 27: 37.PubMedCrossRefGoogle Scholar
  72. Gibson, G.E., Jope, R., and Blass, J.P., 1975, Decreased synthesis of acetylcholine accompanying impaired oxidation of pyruvic acid in rat brain minces, Biochem. J. 148: 71.Google Scholar
  73. Glover, V.A.S., and Potter, L.T., 1971, Purification and properties of choline acetyl-transferase from ox brain striate nuclei, J. Neurochem. 18: 571.PubMedCrossRefGoogle Scholar
  74. Goldberg, A.M., and Silbergeld, E.K., 1974, Neurochemical aspects of lead-induced hyperactivity, Trans. Am. Soc. Neurochem. 5: 185.Google Scholar
  75. Green, A.R., Boullin, D.J., Massarelli, R., and Hanin, I., 1972, Can the human blood platelet be used as a model for the cholinergic nerve endings? Life Sci. 11: 1049.CrossRefGoogle Scholar
  76. Groth, D.P., Bain, J.A., and Pfeiffer, C.C., 1958, The comparative distribution of C14 -labelled 2-dimethylaminoethanol and choline in the mouse, J. Pharmacol. Exp. Ther. 124: 290.PubMedGoogle Scholar
  77. Growdon, J.H., Cohen, E.L., and Wurtman, R.J., 1977a, Treatment of brain disease with dietary precursors of neurotransmitters, Ann. Int. Med. 86: 337.Google Scholar
  78. Growdon, J.H., Cohen, E.L., and Wurtman, R.J., 1977b, Huntington’s disease: clinical and chemical effects of choline administration, Ann. Neurol 7: 418.CrossRefGoogle Scholar
  79. Growdon, J.H., Cohen, E.L., and Wurtman, R.J., 1977c, Effects of oral choline administration on serum and CSF choline levels in patients wit Huntington’s disease, J. Neurochem. 28: 229.PubMedCrossRefGoogle Scholar
  80. Growdon, J.H., Hirsch, M.J., Wurtman, R.J., and Wiener, W., 1977d, Oral choline administration to patients with tardive dyskinesia, N. Engl J. Med. 297: 524.CrossRefGoogle Scholar
  81. Haga, T., and Noda, H., 1973, Choline uptake systems of rat brain synaptosomes, Biochim. Biophys. Acta 291: 564.PubMedCrossRefGoogle Scholar
  82. Hanin, I., 1974, “Choline and Acetylcholine: Handbook of Chemical Assay Methods” Raven Press, New York.Google Scholar
  83. Hanin, I., and Schuberth, J., 1974, Labeling of acetylcholine in the brain of mice fed on a diet containing deuterium labeled choline: studies utilizing gas chromatography mass spectrometry, J. Neurochem. 23: 819.PubMedCrossRefGoogle Scholar
  84. Hanin, I., Kopp, U., Zahniser, N.H., Shih, T.M., Spiker, D.G., Merikangas, J.R., Kupfer, D.J., and Foster, F.G., 1977, Acetylcholine and choline in human plasma and red blood cells: a gas Chromatograph mass spectrometric evaluation, in “Cholinergic Mechanisms and Psychopharmacology” (D.J. Jenden, ed.), pp. 181–195, Plenum Press, New York.Google Scholar
  85. Haubrich, D.R., and Chippendale, T.J., 1977, Minireview: regulation of acetylcholine synthesis in nervous tissue, Life Sci. 20: 1465.PubMedCrossRefGoogle Scholar
  86. Haubrich, D.R., Wang, P.F.L., and Wedeking, P., 1974a, Role of choline in biosynthesis of acetylcholine, Fed. Proc. 33: 477.Google Scholar
  87. Haubrich, D.R., Wedeking, P.W., and Wang, P.F.L., 1974b, Increase in tissue concentration of acetylcholine in guinea pigs in vivo induced by administration of choline, Life Sci. 14: 921.PubMedCrossRefGoogle Scholar
  88. Haubrich, D.R., Wang, P.F.L., Clody, D.E., and Wedeking, P.W., 1975, Increase in rat brain acetylcholine induced by choline or deanol, Life Sci. 17: 975.PubMedCrossRefGoogle Scholar
  89. Haubrich, D.R., Wang, P.F.L., Chippendale, T., and Procter, E., 1976, Choline and acetylcholine in rats: effect of dietary choline, J. Neurochem. 27: 1305.PubMedCrossRefGoogle Scholar
  90. Heinrich, C.P., Stadler, H., and Weiser, H., 1973, The effect of thiamine deficiency on the acetylcoenzymeA and acetylcholine levels in the rat brain, J. Neurochem. 27: 1273.CrossRefGoogle Scholar
  91. Higgins, T., Chaykin, S., Hammond, K.B., and Humbert, J.R., 1972, Trimethylamine N-oxide synthesis: a human variant, Biochem. Med. 6: 392.PubMedCrossRefGoogle Scholar
  92. Hirsch, M.J., and Wurtman, R.J., 1978, Acute lecithin consumption elevates brain acetylcholine content, Fed. Proc. 37: 3164.Google Scholar
  93. Hirsch, M.J., Growdon, J.H., and Wurtman, R.J., 1977a, Increase in hippocampal acetylcholine after choline administration, Brain Res. 125: 383.PubMedCrossRefGoogle Scholar
  94. Hirsch, M.J., Growdon, J.H., and Wurtman, R.J., 1977b, Oral choline administration to patients with tardive dyskinesia,Neurology 27: 391.Google Scholar
  95. Hosein, E.A., Chabrol, J.G., and Freedman, G., 1966, The effect of thiamine deficiency in rats and pigeons on the content of materials with acetylcholine-like activity in brain, heart and skeletal muscle, Rev. Can. Biol. 25: 129.PubMedGoogle Scholar
  96. Illingsworth, D.R., and Portman, O.W., 1972, The uptake and metabolism of plasma lysophosphatidylcholine in vivo by the brain of squirrel monkeys, Biochem. J. 130: 557.Google Scholar
  97. Israel, M., and Tucek, S., 1974, Utilization of acetate and pyruvate for the synthesis of “total,” “bound,” and “free” acetylcholine in the electric organ of Torpedo, J. Neurochem. 22: 487.PubMedCrossRefGoogle Scholar
  98. Janowsky, D.S., El-Yousef, M.K., Davis, J.M., and Sekerke, M.J., 1972, A cholinergic-adrenergic hypothesis of mania and depression, Lancet 2: 632.PubMedCrossRefGoogle Scholar
  99. Janowsky, D.S., El-Yousef, M.K., Davis, J.M., and Sekerke, H.J., 1973, Parasympathetic suppression of manic symptoms by physostigmine, Arch. Gen. Psychiatry 28: 542.PubMedGoogle Scholar
  100. Jenden, D.J., 1977a, “Cholinergic Mechanisms and Psychopharmacology” (DJ. Jenden, ed.), Plenum Press, New York.Google Scholar
  101. Jenden, D.J., 1977b, Some recent developments in the biochemical pharmacology of cholinergic systems, in “Neuroregulators and Psychiatric Disorders” (E. Usdin, D.A. Hamburg, and J.D. Barchas, eds.), pp. 425–433, Oxford University Press, New York.Google Scholar
  102. Jenden, D.J., 1977c, Estimation of acetylcholine and the dynamics of its metabolism, in “Cholinergic Mechanisms and Psychopharmacology” (D.J. Jenden, ed.), pp. 139–162, Plenum Press, New York.Google Scholar
  103. Jenden, D.J., 1978, Applications of gas chromatography mass spectrometry in psychopharmacology, in “Psychopharmacology: A Generation of Progress” (M.A. Lipton, A. Di Mascio, and K.F. Killam, eds.), pp. 879–886, Raven Press, New York.Google Scholar
  104. Jenden, D.J., Jope, R.S., and Weiler, M.H., 1976, Regulation of acetylcholine synthesis: does cytoplasmic acetylcholine control high affinity choline uptake, Science 194: 635.PubMedCrossRefGoogle Scholar
  105. Jenden, D.J., Macri, J., Roch, M., and Russell, R.W., 1977, Antagonism by deanol of some behavioral effects of hemicholinium, Commun. Psychopharmacol. 7: 575.Google Scholar
  106. Jenden, D.J., Macri, J., Roch, M., and Russell, R.W., 1977, Antagonism by deanol of some behavioral effects of hemicholinium, Commun. Psychopharmacol. 7: 575.Google Scholar
  107. Johnson, S., and Domino, E.F., 1971, Cholinergic enzymatic activity of cerebrospinal fluid of patients with various neurologic diseases, Clin. Chim. Acta 35: 421.PubMedCrossRefGoogle Scholar
  108. Jonsson, L.E., and Schuberth, J., 1969, Amphetamine effect on the choline concentration of human cerebrospinal fluid, Life Sci. 8: 977.PubMedCrossRefGoogle Scholar
  109. Jope, R.S., 1977, Pyruvate utilization choline uptake and acetylcholine synthesis, in “Cholinergic Mechanisms and Psychopharmacology” (D.J. Jenden, ed.), pp. 497–509, Plenum Press, New York.Google Scholar
  110. Jope, R.S., and Jenden, D.J., 1977, Synaptosomal transport and acetylation of choline, Life Sci. 20: 1389.PubMedCrossRefGoogle Scholar
  111. Jope, R.S., and Jenden, D.J., 1978, Deanol utilization by rat brain, Fed. Proc. 37: 3164.Google Scholar
  112. Jope, R.S., and Jenden, D.J., 1978, Deanol utilization by rat brain, Fed. Proc. 37: 3164.Google Scholar
  113. Kahlson, G., and Macintosh, F.C., 1939, Acetylcholine synthesis in a sympathetic ganglion, J. Physiol. 96: 277.PubMedGoogle Scholar
  114. Kato, A.C., Lefresne, P., Berwald-Netter, Y., Beaujouan, J.C., Glowinski, J., and Gros, F., 1977, Choline stimulates the synthesis and accumulation of acetate in a cholinergic neuroblastoma clone, Biochem. Biophys. Res. Commun. 78: 350.PubMedCrossRefGoogle Scholar
  115. Kewitz, H., and Pleul, O., 1976, Synthesis of choline from ethanolamine in rat brain, Proc. Natl Acad. Sci. USA 73: 2181.PubMedCrossRefGoogle Scholar
  116. Knapp, D.R., and Gaffney, T.E., 1972, Use of stable isotopes in pharmacology — clinical pharmacology, Clin. Pharmacol Ther. 13: 307.PubMedGoogle Scholar
  117. Korey, S.R., de Braganza, B., and Nachmansohn, D., 1951, Choline acetylase: V. esterification and transacetylations, J. Biol Chem. 189:105.Google Scholar
  118. Krell, R.D., and Goldberg, A.M., 1975, Effect of choline acetyltransferase inhibitors on mouse and guinea pig brain choline and acetylcholine, Biochem. Pharmacol 24: 391.PubMedCrossRefGoogle Scholar
  119. Kuhar, M.J., and Murrin, L.C., 1978, Sodium-dependent high affinity choline uptake, J. Neurochem. 30: 15.PubMedCrossRefGoogle Scholar
  120. Kuhar, M.J., Sethy, V.H., Roth, R.H., and Aghajanian, G.K., 1973, Choline: selective accumulation by central cholinergic neurons, J. Neurochem. 20: 581.PubMedCrossRefGoogle Scholar
  121. Kuntscherova, J., 1971, Vliv kratkodobeho bladoveni na hladinu volneho cholinu v krevni plasme bilych krys, Plzen. Lek. Shorn. 36: 17.Google Scholar
  122. Kuntscherova, J., 1972, Effect of short-term starvation and choline on the acetylcholine content of organs of albino rats, Physiol Bohemoslov. 21: 655.PubMedGoogle Scholar
  123. Kuntscherova, J., and Vlk, J., 1968, Uber die bedeutung der cholin und glukosezufuhr fur die normalisierung der durch hungern herabgesetzten acetylcholinvorrate in der geweben, Plzen. Lek. Shorn. 31: 5.Google Scholar
  124. Kvetnansky, R., Weise, V.K., and Kopin, I.J., 1970, Elevation of adrenal tyrosine hydroxylase and phenylethanolamine-N-methyl transferase by repeated immobilization of rats, Endocrinology 87: 744.PubMedCrossRefGoogle Scholar
  125. L’Hermite, P., and Levy, J.C., 1975, Contingency of the action of the dimethylamino-ethanol and of its esters as precursors of the choline during the synthesis of acetylcholine, Ann Pharm. Fr. 33: 137.PubMedGoogle Scholar
  126. Manaka, S., Sano, K., Fuchinoue, T., and Sekino, H., 1974, Mechanism of action of CDP-choline in Parkinsonism. Experientia 30: 179.PubMedCrossRefGoogle Scholar
  127. Martin, K., 1972, Extracellular cations and the movement of choline across the erythrocyte membrane, J. Physiol. 224: 207.Google Scholar
  128. Martin, K., 1974, Effects of lithium on choline transport in synaptosomes and human erythrocytes, in “Drugs and Transport Processes” (B.A. Callingham, ed.), pp. 347–361, University Park Press, Baltimore.Google Scholar
  129. McGeer, P.L., McGeer, E.G., and Fibiger, H.C., 1973, Choline acetylase and glutanic acid decarboxylase in Huntington’s chorea, Neurology 23: 912.PubMedGoogle Scholar
  130. Morel, M.N., 1975, Incorporation d’acetate dons l’acetylcholine de l’organe electrique de torpille: effets des concentrations d’acetate et de choline, Cr. Acad. Sci. Paris Ser. D. 250: 999.Google Scholar
  131. Morley, B.J., Robinson, G.R., Brown, G.B., Kemp, G.E., and Bradley, R.J., 1977, Effects of dietary choline on nicotinic acetylcholine receptors in brain, Nature 266: 848.PubMedCrossRefGoogle Scholar
  132. Murrin, L.C., Morgenroth III, V.H., and Roth, R.H., 1976, Dopaminergic neurons: effects of electrical stimulation on tyrosine hydroxylase. Mol. Pharmacol. 12: 1070.Google Scholar
  133. Nagler, A.L., Dettbarn, W.D., Scifter, E., and Levenson, S.M., 1968, Tissue levels of acetylcholine and acetylcholinesterase in weanling rats subjected to acute choline deficiency. J. Nutr. 94: 13.PubMedGoogle Scholar
  134. Nordberg, A., 1977, Apparent regional turnover of acetylcholine in mouse brain, Acta Physiol. Scand. S455: 1.Google Scholar
  135. Nordberg, A., and Sundwall, A., 1975, Effect of pentobarbital on endogenous acetylcholine and biotransformation of radioactive choline in different brain regions, in “Cholinergic Mechanisms” (P.G. Waser, ed.), pp. 229–239, Raven Press, New York.Google Scholar
  136. Oesch, F., 1974, Trans-synaptic induction of choline acetyltransferase in the preganglionic neuron of the peripheral sympathetic nervous system. J. Pharmacol. Exp. Ther. 188: 439.PubMedGoogle Scholar
  137. Ogashiwa, M., Takeuchi, K., Hara, M., Tanaka, Y., and Okada, J., 1975, Studies on the intrathecal pharmacotherapy Part I: CDP-choline. Int. J. Clin. Pharmacol. 12: 327.Google Scholar
  138. Okonek, S., and Kilbinger, H., 1974, Determination of acetylcholine, neostigmine and acetylcholinesterase activity in four patients with severe nitrostigmine (E605 forte) intoxication. Arch. Toxicol. 32: 97.PubMedCrossRefGoogle Scholar
  139. Oldendorf, W.H., and Braun, L.D., 1976, [3H]-Tryptoamine and 3H-water as diffusible internal standards for measuring brain extraction of radiolabeled substances following carotid injection. Brain Res. 113: 219.Google Scholar
  140. Osuide, G., 1968, Dimethylaminoethanol and neuromuscular transmission. W. Afr. J. Biol. Appl. Chem. 11: 66.Google Scholar
  141. Pardridge, W.M., and Oldendorf, W.H., 1977, Transport of metabolic substrates through the blood brain barrier. J. Neurochem. 28: 5.PubMedCrossRefGoogle Scholar
  142. Patrick, R.L., and Kirshner, N., 1971, Effect of stimulation on the levels of tryrosine hydroxylase, dopamine β-hydroxylase and catecholamines in intact and denervated rat adrenal glands. Mol. Pharmacol. 7: 87.PubMedGoogle Scholar
  143. Pepeu, G., Freedman, D.X., and Giarman, N.J., 1960, Biochemical and pharmacological studies of dimethylaminoethanol (deanol), J. Pharmacol. Exp. Ther. 129: 291.PubMedGoogle Scholar
  144. Pfeiffer, C.C., 1959, Parasympathetic neurohumors; possible precursors and effect on behavior, Int. Rev. Neurobiol. 1: 195.PubMedCrossRefGoogle Scholar
  145. Pfeiffer, C.C., Jenney, E.H., and Gallagher, W., 1957, Stimulant effect of 2-dimethyl-aminoethanol — possible precursor of brain acetylcholine, Science 126: 610.PubMedCrossRefGoogle Scholar
  146. Pieklik, J.R., and Guynn, R.W., 1975, Equilibrium constants of the reactions of choline acetyl transferase, carnitine acetyltransferase and acetylcholinesterase under physiological conditions, Biol. Chem. 250: 4445.Google Scholar
  147. Polak, R.L., Molenaar, P.C., and Braggaar-Schaap, P., 1977, Regulation of acetylcholine synthesis in rat brain, in “Cholinergic Mechanisms and Psychopharmacology” (D.J. Jenden, ed.), pp. 511–524, Plenum Press, New York.Google Scholar
  148. Quastel, J.H., 1977, Source of the acetyl group in acetylcholine, in “Cholinergic Mechanisms and Psychopharmacology” (D.J. Jenden, ed.), pp. 411–430, Plenum Press, New York.Google Scholar
  149. Quastel, J.H., Tennenbaum, M., and Wheatley, A.H.M., 1936, Choline ester formation in, and choline esterase activities of, tissues in vitro, Biochem. J. 30: 1668.PubMedGoogle Scholar
  150. Racagni, G., Trabucchi, M., and Cheney, D.L., 1975, Steady-state concentrations of choline and acetylcholine in rat brain parts during a constant rate infusion of deuterated choline, Naunyn Schmiedebergs Arch. Pharmacol. 290: 99.PubMedCrossRefGoogle Scholar
  151. Rennick, B., Acara, M., Hysert, P., and Mookerjee, B., 1976, Choline loss during hemodialysis: homeostatic control of plasma choline concentrations,Kidney Int. 10: 329.PubMedCrossRefGoogle Scholar
  152. Reynolds, S.F., 1974, The distribution of pyruvate dehydrogenase in the cat central nervous system in relation to normal and abnormal neural function, Ph.D. dissertation, University of California Los Angeles.Google Scholar
  153. Reynolds, S.F., and Blass, J.P., 1975, Normal levels of acetyl coenzyme A and of acetylcholine in the brains of thiamine-dependent rats,. Neurochem. 24: 185.CrossRefGoogle Scholar
  154. Rossier, J., and Benda, P., 1977, Activation of choline acetyltransferase by chloride: a possible regulatory mechanism, in “Cholinergic Functions and Psychopharmacology” (D.J. Jenden, ed.), pp. 207–221, Plenum Press, New York.Google Scholar
  155. Salvadorini, F., Galeone, F., Nicotera, M., Ombrato, M., and Saba, P., 1975, Clinical evaluation of CDP-choline (NicholinR): efficacy as antidepressant treatment, Curr. Ther. Res. 18: 513.PubMedGoogle Scholar
  156. Sastry, P.S., and Stancer, H.C., 1968, Quantitative analysis and fatty acid composition of phospholipid constituents in cerebrospinal fluid of various age groups, Clin. Chim. Acta 22: 301.PubMedCrossRefGoogle Scholar
  157. Sastry, P.S., and Stancer, H.C., 1968, Quantitative analysis and fatty acid composition of phospholipid constituents in cerebrospinal fluid of various age groups, Clin. Chim. Acta 22: 301.PubMedCrossRefGoogle Scholar
  158. Schain, R.J., 1960, Neurohumors and other pharmacologically active substances in cerebrospinal fluid: a review of the literature, Yale J. Biol. Med. 33: 15.PubMedGoogle Scholar
  159. Schuberth, J., 1977, Central cholinergic dysfunction in man: clinical manifestations and approaches to diagnosis and treatment, in “Cholinergic Mechanisms and Psychopharmacology” (D.J. Jenden, ed.), pp. 733–745, Plenum Press, New York.Google Scholar
  160. Schuberth, J., and Jenden, D.J., 1975, Transport of choline from plasma CSF in the rabbit with reference to the origin of choline and to acetylcholine metabolism in the brain, Brain Res. 84: 245.PubMedCrossRefGoogle Scholar
  161. Schuberth, J., Sparf, B., and Sundwall, A., 1969, A technique for the study of acetylcholine turnover in mouse brain in vivo, J. Neurochem. 16: 695.PubMedCrossRefGoogle Scholar
  162. Schuberth, J., Sparf, B., and Sundwall, A., 1970, On the turnover of acetylcholine in nerve endings of mouse brain in vivo, J. Neurochem. 17: 461.PubMedCrossRefGoogle Scholar
  163. Schultz, S.G., and Curran, P.F., 1973, Coupled transport of sodium and organic solutes, Physiol. Rev. 50: 637.Google Scholar
  164. Shea, P.A., and Aprison, M.H., 1977, Distribution of acetyl-CoA in specific areas of the CNS of the rat as measured by a modification of a radio-enzymatic assay for acetylcholine and choline, J. Neurochem. 28: 51.PubMedCrossRefGoogle Scholar
  165. Simon, J.R., Atweh, S., and Kuhar, M.J., 1976, Sodium-dependent high affinity choline uptake: a regulatory step in the synthesis of acetylcholine, J. Neurochem. 26: 909.PubMedCrossRefGoogle Scholar
  166. Speeg, K.V., Chen, D., McCandless, D.W., and Schenker, S., 1970, Cerebral acetylcholine in thiamine deficiency, Proc. Soc. Exp. Biol. Med. 134: 1005.PubMedGoogle Scholar
  167. Stahl, W.L., and Swanson, P.D., 1974, Biochemical abnormalities in Huntington’s chorea brains, Neurology 24: 813.PubMedGoogle Scholar
  168. Stavinoha, W.B., and Modak, A.T., 1976, Identification and quantitation of acetylcholine (ACh) in mouse blood, Trans. Am. Soc. Neurochem. 7: 132.Google Scholar
  169. Stavinoha, W.B., Weintraub, S.T., and Modak, A.T., 1974, Regional concentrations of choline and acetylcholine in the rat brain. J. Neurochem. 23: 885.CrossRefGoogle Scholar
  170. Suszkiw, J.B., and Pilar, G., 1976, Selective localization of a high affinity choline uptake system and its role in ACh formation in cholinergic nerve terminals, J. Neurochem. 26: 1133.PubMedCrossRefGoogle Scholar
  171. Suszkiw, J.B., Beach, R.C., and Pilar, G., 1976, Choline uptake by cholinergic neuron cell somas, J. Neurochem. 26: 1123.PubMedCrossRefGoogle Scholar
  172. Tamminga, C., Smith, R.C., Chang, S., Haraszti, J.S., and Davis, J.M., 1976, Depression associated with oral choline, Lancet 2: 905.PubMedCrossRefGoogle Scholar
  173. Tamminga, C.A., Smith, R.C., Ericksen, S.E., Chang, S., and Davis, J.M., 1977, Cholinergic influences in tardive dyskinesia. Am. J. Psychiatry 134: 769.PubMedGoogle Scholar
  174. Thoenen, H., 1974, Minireview: trans-synaptic enzyme induction, Life Sci. 14: 223.PubMedCrossRefGoogle Scholar
  175. Tower, D.B., and McEachern, D., 1949a, Acetylcholine and neuronal activity I. Cholinesterase patterns and acetylcholine in the cerebrospinal fluid of patients with craniocerebral trauma, Can. J. Biochem. 27: 105.Google Scholar
  176. Tower, D.B., and McEachern, D., 1949b, Acetylcholine and neuronal activity II. acetylcholine and Cholinesterase activity in the cerebrospinal fluids of patients with epilepsy, Can. J. Biochem. 27: 120.Google Scholar
  177. Tucek, S., and Cheng, S.C., 1974, Provenance of the acetyl group of acetylcholine and compartmentation of acetyl-CoA and Krebs cycle intermediates in the brain in vivo, J. Neurochem. 22: 893.PubMedCrossRefGoogle Scholar
  178. Ulus, I.H., and Wurtman, R.J., 1976, Choline administration: activation of tyrosine hydroxylase in dopaminergic neurons of rat brain, Science 194: 1060.PubMedCrossRefGoogle Scholar
  179. Ulus, I.H., Hirsch, M.J., and Wurtman, R.J., 1977a, Trans-synaptic induction of adrenomedullary tyrosine hydroxylase activity by choline: evidence that choline administration can increase cholinergic transmission, Proc. Natl. Acad. Sci. USA 74: 798.PubMedCrossRefGoogle Scholar
  180. Ulus, I.H., Scally, M.C., and Wurtman, R.J., 1977b, Choline potentiates the trans-synaptic induction of adrenal tyrosine hydroxylase by reserpine, probably by enhancing the release of acetylcholine, Life Sci. 21: 145.PubMedCrossRefGoogle Scholar
  181. Ulus, I.H., Wurtman, R.J., Scally, M.C., and Hirsch, M.J., 1977c, Effect of choline on cholinergic function, in “Cholinergic Mechanisms and Psychopharmacology” (D.J. Jenden, ed.), pp. 525–528, Plenum Press, New York.Google Scholar
  182. Ulus, I.H., Scally, M.C., and Wurtman, R.J., (in press), Potentiation by choline of the induction of adrenal tyrosine hydroxylase by phenoxybenzamine, 6-hydroxydopamine, insulin or exposure to cold, J. Pharmacol. Exp. Ther. Google Scholar
  183. Van Woert, M.H., 1976, Parkinson’s disease, tardive dyskinesia and Huntington’s chorea, in “Biology of Cholinergic Function” (A. M. Goldberg, and I. Hanin, eds.), pp. 583–601, Raven Press, New York.Google Scholar
  184. Vorhees, C.V., Schmidt, D.E., Barrett, R.J., and Schenker, S., 1977, Effects of thiamine deficiency on acetylcholine levels and utilization in vivo in rat brain, J. Nutr. 107: 1902.PubMedGoogle Scholar
  185. Wecker, L., and Dettbarn, W.D., 1978, Differential control of acetylcholine levels in striatal and hippocampal areas of rat brain, Fed. Proc. 37: 820.Google Scholar
  186. Wecker, L., Dettbarn, W.D., and Schmidt, D.E., 1978, Choline administration: modification of the central actions of atropine, Science 199: 86.PubMedCrossRefGoogle Scholar
  187. Wecker, L., Dettbarn, W.D., and Schmidt, D.E., 1978, Choline administration: modification of the central actions of atropine, Science 199: 86.PubMedCrossRefGoogle Scholar
  188. Weiss, B.L., Foster, F.G., and Kupfer, D.J., 1976, Cholinergic involvement in neuropsychiatrie syndromes, in “Biology of Cholinergic Function” (A.M. Goldberg, and I. Hanin, eds.), pp. 603–617, Raven Press, New York.Google Scholar
  189. Welsh, M.J., Markham, C.H., and Jenden, D.J., 1976, Acetylcholine and choline in cerebrospinal fluid of patients with Parkinson’s disease and Huntington’s chorea, J. Neurol. Neurosurg. Psychiatry 39: 367.CrossRefGoogle Scholar
  190. White, H.L., and Wu, J.C., 1973, Kinetics of choline acetyltransferase (EC 2.3.1.6) from human and other mammalian control and peripheral nervous tissues, J. Neurochem. 20: 297.PubMedCrossRefGoogle Scholar
  191. Wurtman, R.J., Hirsch, M.J., and Growdon, J.H., 1977, Lecithin consumption raises serum free choline levels, Lancet 2: 68.PubMedCrossRefGoogle Scholar
  192. Yamamura, H.T., and Snyder, S.H., 1973, High affinity transport of choline into synaptosomes of rat brain, J. Neurochem. 21: 1355.CrossRefGoogle Scholar
  193. Yamamura, H.I., Wastek, G.J., Johnson, P.C., and Stern, L.Z., 1977, Biochemical characterization of muscarinic cholinergic receptors in Huntington’s disease, in “Cholinergic Mechanisms and Psychopharmacology” ( D.J. Jenden, ed.), pp. 35–47, Plenum Press, New York.Google Scholar
  194. Yavin, E., 1977, Base stimulation of phospholipid metabolism in neuroblastoma cells II. Estimates of rates of synthesis and degradation of phosphoglycerides by base manipulations, Biochim. Biophys. Acta 489: 290.PubMedGoogle Scholar
  195. Zahniser, N.R., 1977, Is 2-dimethylaminoethanol (deanol) a precursor of acetylcholine? A neurochemical and behavioral investigation, Ph.D. thesis, University of Pittsburgh, Pittsburgh, PA.Google Scholar
  196. Zahniser, N.R., Chou, D., and Hanin, I., 1977, Is 2-dimethylaminoethanol (deanol) indeed a precursor of brain acetylcholine? A gas chromatographic evaluation, J. Pharmacol. Exp. Ther. 200: 545.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • D. J. Jenden
    • 1
  1. 1.Department of Pharmacology, School of Medicine and The Brain Research InstituteUniversity of CaliforniaLos AngelesUSA

Personalised recommendations