Dietary Control of Central Cholinergic Activity

  • R. J. Wurtman
  • J. H. Growdon


This chapter describes the relationship between choline — administered as choline chloride or as phosphatidylcholine (lecithin), by injection or via the diet — and tissue acetylcholine (ACh) levels, and shows that choline administration, by raising blood and brain choline levels, can be a major determinant of the rate of ACh synthesis and, probably, of the amount of the neurotransmitter released when cholinergic neurons are depolarized.


Tyrosine Hydroxylase Cholinergic Neuron Competitor Ratio Choline Chloride Stomach Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ansell, G.B., and Spanner, S., 1967, The metabolism of labeled ethanolamine in the brain of the rat in vivo, J. Neurochem. 14: 813.Google Scholar
  2. Aoki, K., and Siegel, F.L., 1970, Hyperphenylalanemia: disaggregation of brain polyribosomes in young rats, Science 168: 129.PubMedCrossRefGoogle Scholar
  3. Bremer, J., and Greenberg, D.M., 1961, Methyl transferring enzyme system in the biosynthesis of lecithin (phosphatidylcholine), Biochim. Biophys. Acta 46: 205.CrossRefGoogle Scholar
  4. Browning, E.T., and Schulman, M.P., 1968, (14C) acetylcholine synthesis by cortex slices of rat brain, J. Neurochem. 15: 1391.Google Scholar
  5. Carlsson, A., Kehr, W., Lindquist, M., Magnusson, T., and Atack, C.V., 1972, Regulation of monoamine metabolism in the central nervous system, Pharmac. Rev. 24: 371.Google Scholar
  6. Cohen, E.L., and Wurtman, R.J., 1975, Brain acetylcholine: increase after systemic choline administration, Life Sci. 76: 1095.CrossRefGoogle Scholar
  7. Cohen, E.L., and Wurtman, R.J., 1976, Brain acetylcholine: control by dietary choline, Science 191: 561.PubMedCrossRefGoogle Scholar
  8. Colmenares, J.L., Wurtman, R.J., and Fernstrom, J.D., 1975, Effect of ingesting a carbohydrate-fat meal on the levels and synthesis of 5-hydroxyindoles in various regions of the rat central nervous system, J. Neurochem. 25: 825.CrossRefGoogle Scholar
  9. Fernstrom, J.D., and Wurtman, R.J., 1972, Brain serotonin content: physiological regulation by plasma amino acids, Science 178: 414.PubMedCrossRefGoogle Scholar
  10. Fernstrom, J.D., and Wurtman, R.J., 1974, Nutrition and the brain, Sci. Am. 230: 84.PubMedCrossRefGoogle Scholar
  11. Freeman, J.J., and Jenden, D.J., 1976, The source of choline for acetylcholine synthesis in brain, Life Sci. 19: 949.PubMedCrossRefGoogle Scholar
  12. Gibson, C.J., and Wurtman, R.J., 1977, Physiological control of brain catecholamine synthesis by brain tyrosine concentration, Biochem. Pharmacol. 26: 1131.CrossRefGoogle Scholar
  13. Growdon, J.H., Cohen, E.L., and Wurtman, R.J., 1977a, Effects of oral choline administration on serum and CSF choline levels in patients with Huntington’s Disease, J. Neurochem. 28: 229.CrossRefGoogle Scholar
  14. Growdon, J.H., Hirsch, M.J., Wurtman, R.J., and Wiener, W., 1977b, Oral choline administration to patients with tardive dyskinesia, TV. Engl. J. Med. 297: 524.CrossRefGoogle Scholar
  15. Haga, T., and Noda, H., 1973, Choline uptake systems of rat brain synaptosomes, Biochim. Biophys. Acta 291: 564.CrossRefGoogle Scholar
  16. Haubrich, D.R., Wang, P.F.L., and Wedeking, P., 1974, Role of choline in biosynthesis of acetylcholine, Fed. Proc. 33: 477.Google Scholar
  17. Hirsch, M.J., Growdon, J.H., and Wurtman, R.J., 1977, Increase in hippocampal acetylcholine after choline administration,Brain Res. 332: 383.CrossRefGoogle Scholar
  18. Ikeda, M., Levitt, M., and Udenfriend, S., 1965, Hydroxylation of phenylalanine by purified preparations of adrenal and brain tyrosine hydroxylase, Biochem. Biophys. Res. Commun. 18: 482.PubMedCrossRefGoogle Scholar
  19. Kaita, A.A., and Goldberg, A.M., 1969, Control of acetylcholine synthesis: inhibition of choline acetyltransferase by acetylcholine, J. Neurochem. 16: 1185.CrossRefGoogle Scholar
  20. Kewitz, H., and Pleul, O., 1976, Synthesis of choline from ethanolamine in rat brain, Proc. Natl. Acad. Sci. USA 73(7): 2181.Google Scholar
  21. Murrin, C.L., Morgenroth, V.H., and Roth, R.H., 1976, Dopaminergic neurons: effects of electrical stimulation on tyrosine hydroxylase,Mol. Pharmacol. 12: 1070.Google Scholar
  22. Nagler, A.L., Dettbarn, W.D., Scifter, E., and Levenson, S.M., 1968, Tissue levels of acetylcholine and acetylcholinesterase in weanling rats subjected to acute choline deficiency, J. Nutr. 94: 13.Google Scholar
  23. Pardridge, W.M., 1977, Regulation of amino acid availability to the brain, in “Nutrition and the Brain” ( R.J. Wurtman and J.J. Wurtman, eds.), Vol. 1 pp. 141–204, Raven Press, New York.Google Scholar
  24. Pardridge, W.M., and Oldendorf, W.H., 1977, Transport of metabolic substrates through the blood-brain barrier, J. Neurochem. 28: 5.CrossRefGoogle Scholar
  25. Scally, M.C., and Wurtman, R.J., 1977, Brain tyrosine level controls striatal dopamine synthesis in haloperidol-treated rats, J. Neural Transm. 41: 1.CrossRefGoogle Scholar
  26. Schuberth, J., and Jenden, D.J., 1975, Transport of choline from plasma to cerebrospinal fluid in the rabbit, with reference to the origin of choline and acetylcholine metabolism in the brain, Brain Res. 84: 245.PubMedCrossRefGoogle Scholar
  27. Thoenen, H., 1974, Trans-synaptic enzyme induction, Life Sci. 14: 223.PubMedCrossRefGoogle Scholar
  28. Ulus, I.H., and Wurtman, R.J., 1976, Choline administration: activation of tyrosine hydroxylase in dopaminergic neurons of rat brain, Science 194: 1060.PubMedCrossRefGoogle Scholar
  29. Ulus, I.H., Hirsch, M.J., and Wurtman, R.J., 1977a, Trans-synaptic induction of adrenomedullary tyrosine hydroxylase activity by choline: evidence that choline administration increases cholinergic transmission, Proc. Natl. Acad. Sci. USA 74: 798.PubMedCrossRefGoogle Scholar
  30. Ulus, I.H., Scally, M.C., and Wurtman, R.J., 1977b, Choline potentiates the trans-synaptic induction of adrenal tyrosine hydroxylase by reserpine, probably by enhancing the release of acetylcholine, Life Sci. 21: 145.PubMedCrossRefGoogle Scholar
  31. Ulus, I.H., Scally, M.C., and Wurtman, R.J., (in press), Potentiation by choline of the induction of adrenal tyrosine hydroxylase by phenoxybenzamine,6-hydroxydopamine, insulin, or exposure to cold, J. Pharmacol. Exp. Ther. Google Scholar
  32. Wurtman, R.J., and Fernstrom, J.D., 1976, Control of brain neurotransmitter synthesis by precursor availability and nutritional state, Biochem. Pharmacol. 25: 1691.PubMedCrossRefGoogle Scholar
  33. Wurtman, R.J., and Scally, M.C., 1977, Precursor control of neurotransmitter synthesis, in “Biochemistry and Function of Monoamine Enzymes” ( E. Usdin, ed.), pp. 231–261, Marcel Dekker, New York.Google Scholar
  34. Wurtman, R.J., Hirsch, M.J., and Growdon, J.H., 1977, Lecithin consumption raises serum free choline levels, Lancet 2:68.PubMedCrossRefGoogle Scholar
  35. Yamamura, H.I., and Snyder, S.H., 1973, High affinity transport of choline into synapto- somes of rat brain, J. Neurochem. 21: 1355.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • R. J. Wurtman
    • 1
  • J. H. Growdon
    • 1
    • 2
  1. 1.Laboratory of Neuroendocrine Regulation, Department of Nutrition and Food ScienceMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of NeurologyTufts University Medical SchoolBostonUSA

Personalised recommendations