Brain Acetylcholine and Animal Electrophysiology

  • A. G. Karczmar


This review concerns the relationship between electrophysiological activity of the brain and the central cholinergic system. This dipole may be construed in a sense so broad as to be beyond the space limitations of this article; thus, further defining is necessary. Electrophysiological activity to be reviewed here is generated by neuronal populations rather than single neurons, as it involves cholinergically mediated changes in ongoing electrical activity of neuronal populations referred to as electroencephalograph (EEG), electrocorticogram (ECoG), etc. Another major response of neuronal populations, which is also the subject of this review is the compound potential evoked by peripheral or brain stimulation (EP). On the other hand, while the EEG and ECoG are generated by the summation of individual postsynaptic potentials and related phenomena, the pertinent unitary mechanisms whether concerning noncholinergic or cholinoceptive and cholinergic neurons cannot be reviewed in the present context.


Cholinergic Neuron Reticular Formation Cholinergic System Paradoxical Sleep Cholinergic Agonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amatruda III, T.T., Black, D.A., McKenna, T.M., McCarley, R.W., and Hobson, J.A., 1975, Sleep cycle control and cholinergic mechanisms; differential effects of carbachol injections at pontine brain stem sites, Brain Res. 98: 501.PubMedGoogle Scholar
  2. Andersen, P., and Andersson, S. A., 1968 “Physiological Basis of Alpha Rhythm,” Applet on Century-Crofts, New York.Google Scholar
  3. Babb, T.L., Babb, M., Mahnke, J.H., and Verseano, M., 1973, The action of cholinergic agents on the electrical activity of the non-specific nuclei of the thalamus, Int. J. Neurol. 8: 198.Google Scholar
  4. Ban, T., and Hojo, M., 1971, A comparative study of the effects of antiparkinsonian drugs on oxotremorine-induced EEG and muscular activities, Psychopharmacologia (Berl.) 14: 1.Google Scholar
  5. Baneijee, U., Feldberg, W., and Flynn, V.P., 1970, Microinjections of tubocurarine, leptazol, strychnine and picrotoxin into the cerebral cortex of anaesthesized cats, Br. J. Pharmacol 40: 6.Google Scholar
  6. Baker, W.W., 1965, Tremorine suppression of hippocampal strychnine foci, Arch. Int. Pharmacodyn. Ther. 155: 213.Google Scholar
  7. Baker, W.W., and Benedict, F., 1968, Analysis of local discharges induced by intrahippocampal microinjection of carbachol or diisopropylfluorophosphate (DFP), Int. J. Neuropharmacol. 7: 135.PubMedGoogle Scholar
  8. Barnes, C.D., and Pompeiano, O., 1970, A brain stem cholinergic system activated by vestibular volleys, Neuropharmacology 9: 391.PubMedGoogle Scholar
  9. Barnes, L., Karczmar, A.G., and Ingerson, A., 1975, Effects of DFP on brain serotonin, Pharmacology 17: 180.Google Scholar
  10. Barnes, L., Karczmar, A.G., and Ingerson, A., 1976, Serotonin and acetylcholine of rabbit brain following DFP, Pharmacology 18: 202.Google Scholar
  11. Barnes, L., Koehn, G., and Karczmar, A.G., in press, Effects of diisopropylphosphofluoridate (DFP) on pain threshold and and serotonin, Proceedings of the Seventh International Congress of Pharmacology, Abstracts.Google Scholar
  12. Baxter, B.L., 1969, Induction of both emotional behavior and a novel form of REM sleep by chemical stimulation applied to cat mesencephalon, Exp. Neurol 23: 220.PubMedGoogle Scholar
  13. Beleslin, D., Polak, R.L., and Sproull, D.H., 1965, The effect of leptazol and strychnine on the acetylcholine release from the cat brain, J. Physiol (Lond) 181: 308.Google Scholar
  14. Ben-Ari, Y., Dingledine, R., Kanazawa, I., and Kelly, J.S., 1976, Inhibitory effects of acetylcholine on neurones in the feline nucleus reticularis thalami, J. Physiol (Lond.) 261: 641.Google Scholar
  15. Ben-Ari, Y., Zigmond, R.E., Shute, C.C.D., and Lewis, P.R., 1977, Regional distribution of choline acetyltransferase and acetylcholinesterase within the amygdaloid complex and stria terminalis system, Brain Res. 120: 435.PubMedGoogle Scholar
  16. Birdsall, N.J.M., Burgeu, A.S.V., and Hulme, E.C., 1977, Correlation between the binding properties and pharmacological responses of muscarinic receptors, in “Cholinergic Mechanisms and Psychopharmacology,” (D.J. Jenden, ed.), pp. 25–33, Plenum Press, New York.Google Scholar
  17. Bokums, J.A., and Elliott, H.W., 1968, Effects of physostigmine on electrical activity of the cat Brain. Pharmacology 1: 98.Google Scholar
  18. Bonnet, V., and Bremer, F., 1937, Action du potassium, du calcium et de l’acetylcholine sur les activités electriques, spontanees et provoquees, de l’ecorce cerebrale, C.R. Soc. Biol 136: 1211.Google Scholar
  19. Borbely, A.A., 1973, “Pharmacological Modifications of Evoked Brain Potentials”, Hans Huber, Bern.Google Scholar
  20. Bourdois, P.S., Mitchell, J.F., Somogyi, G.T., and Berle, J.C., 1974, The output per stimulus of acetylcholine from cerebral cortical slices in the presence or absence of cholinesterase inhibition, Br. J. Pharmacol 52: 509.PubMedGoogle Scholar
  21. Bovet, D., Longo, V.G., and Silvestrini, B., 1957, Les methodes d’investigations electro- physiologiques dans l’etude des medicaments tranquillisants, in “Internatl. Symp. on Psychotropic. Drug”, (S. Garattini and V. Ghetti, eds.), pp. 193–206, Elsevier, Amsterdam.Google Scholar
  22. Bradley, P.B., and Elkes, J., 1953, The effect of atropine, hyoscyamine, physostigmine, and neostigmine on the electrical activity of the brain of the conscious cat, J. Physiol (Lond.) 120: 14 P.Google Scholar
  23. Bradley, P.B., and Elkes, J., 1957, The effects of some drugs on the electrical activity of the brain, Brain 88: 11.Google Scholar
  24. Bremer, F., 1960, Neurophysiology mechanism in cerebral arousal, in “The Nature of Sleep” (G.E. Wolstenholm and M. O’Connor, eds.), pp. 30–50, Little Brown & Co., Boston.Google Scholar
  25. Bremer, F., and Chatonnet, J., 1949, Acetylcholine et cortex cerebrale, Arch. Int. Physiol Biochim. 57: 106.PubMedGoogle Scholar
  26. Brooks, D.C., and Gershon, M.D., 1972, An analysis of the effect of reserpine upon ponto-geniculo-occipital wave activity in the cat, Neuropharmacology 11: 449.Google Scholar
  27. Brooks, D.C., Gershon, M.D., and Simon, R.P., 1972, brain stem serotonin depletion and ponto-geniculo-occipital wave activity in the cat treated with reserpine, Neuropharmacology 11: 511.Google Scholar
  28. Brucke, F.T., and Stumpf, C., 1957, The pharmacology of “arousal reactions” in “Internatl. Symp. on Psychotropic Drugs”, (S. Garattini and V. Ghetti, eds.), pp. 319–324, Elsevier, Amsterdam.Google Scholar
  29. Buchwald, N.A., Jeuser, G., Wyers, E.J., and Lauprecht, C.W., 1961a, The “caudate spindle”. III. Inhibition of high frequency stimulation of subcortical structures, Electroencephalogr. Clin. Neurophysiol. 13: 525.PubMedGoogle Scholar
  30. Buchwald, N.A., Wyers, E.J., Lauprecht, C.W., and Jeuser, G., 1961b, The “caudate spindle”. IV. A behavioral index of caudate-induced inhibition, Electroencephalogr. Clin. Neurophysiol. 13: 531.Google Scholar
  31. Buchwald, N.A., Wyers, E.J., Okuma, T., and Jeuser, G., 1961c, The “caudate spindle”. I. Electrophysiological properties, Electroencephalogr. Clin. Neurophysiol. 75: 509.Google Scholar
  32. Buchwald, N.A., Horwath, F.E., Wyers, E.J., and Wakefield, C., 1964, Electroencephalogram rhythm correlated with milk reinforcement in cats, Nature (Lond) 207: 830.Google Scholar
  33. Butcher, L.L., 1977, Recent advances in histochemical techniques for the study of central cholinergic mechanisms, in “Cholinergic Mechanisms and Psychopharmacology”, (D.J. Jenden, ed.), pp. 93–124, Plenum Press, New York.Google Scholar
  34. Celesia, G.C., and Jasper, H.H., 1966, Acetylcholine released from cerebral cortex in relation to state of activation, Neurology 76: 1053.Google Scholar
  35. Chatfleld, P.O., and Dempsey, E.W., 1942, Some effects of prostigmine and acetylcholine on cerebral potentials, Am. J. Physiol. 135: 633.Google Scholar
  36. Chatfleld, P.O., and Lord, J.T., 1955, Effects of atropine, prostigmine and acetylcholine on evoked cortical potentials, Electroencephalogr. Clin. Neurophysiol 7: 553.Google Scholar
  37. Chen, G., Ensor, C.R., and Bohner, B., 1968, Studies of drug effects on electrically- induced extensor seizures and clinical implications, Arch. Int. Pharmacodyn. Ther. 772: 183.Google Scholar
  38. Cheney, D.L., and Costa, E., 1978, Biochemical pharmacology of cholinergic neurons, in “Psychopharmacology — A Generation of Progress”, (M.A. Lipton, A. DiMascio, K.F. Killam, eds.), pp. 283–291, Raven Press, New York.Google Scholar
  39. Cheney, D.L., LeFevre, H.F., and Racagni, G., 1975, Choline acetyltransferase activity and mass fragmentographic measurement of acetylcholine in specific nuclei and tracts of rat brain, Neuropharmacology 74: 801.Google Scholar
  40. Cheney, D.L., Racagni, E., and Costa, E., 1976, Appendix II: Distribution of acetylcholine and choline acetyltransferase in specific nuclei and tracts of rat brain, in “Biology of Cholinergic Function” (A.M. Goldberg and I. Hanin, eds.), pp. 655–660, Raven Press, New York.Google Scholar
  41. Cheramy, A., Nieoullon, A., and Glowinski, J., in press, Role of various nigral afferents on the activity of the nigrostriatal dopaminergic pathways, in “Interdependence of Neurotransmitter Systems in the CNS” (J. Glowinski and A.G. Karczmar, eds.), 7th International Congress of Pharmacology, Pergamon Press, Oxford.Google Scholar
  42. Clemente, D.C., Sterman, M.B., and Wyrwicka, W., 1964, Post-reinforcement EEG synchronization during alimentary behavior, Electroencephalogr. Clin. Neurophysiol. 16: 355.PubMedGoogle Scholar
  43. Coleman, J.C., and Lindsley, D.B., 1975, Hippocampal correlates of free behavior and behavior induced by stimulation of two hypothalamic-hippocampal systems in the cat, Exp. Neurol. 49: 506.PubMedGoogle Scholar
  44. Collier, B., Ilson, D., and Lovet, S., 1977, Factors affecting choline uptake by ganglia and the relationship between choline uptake and acetylcholine synthesis, in “Cholinergic Mechanisms and Psychopharmacology” (D.J. Jenden, ed.), pp. 457–464, Plenum Press, New York.Google Scholar
  45. Cordeau, J.D., and Mancia, M., 1959, Evidence for the existence of an electroencephalographic synchronization mechanism originating in the lower brain stem, Electroencephalogr. Clin. Neurophysiol. 77: 551.Google Scholar
  46. Cordeau, J.D., Moreau, A., Beaulnes, A., and Lanrin, C., 1963, EEG and behavioral changes following microinjections of acetylcholine and adrenaline in the brain stem of cats, Arch. Ital. 707: 30.Google Scholar
  47. Crawford, J.M., Curtis, D.R., Voorhoens, P.E., and Wilson, V.J., 1966, Acetylcholine sensitivity of cerebellar neurons in the cat, J. Physiol (Lond.) 186: 139.Google Scholar
  48. Daniels, J.C., and Spehlman, R., 1973, The convulsant effects of topically applied atropine, Electroencephalogr. Clin. Neurophysiol. 34: 83.PubMedGoogle Scholar
  49. De Feudis, F.W., 1974, “Central Cholinergic Synapses and Behaviour,” Academic Press, London.Google Scholar
  50. Dempsey, F.W., and Morison, R.S., 1941, The production of rhythmically recurrent cortical potentials after localized thalamic stimulation, Am. J. Physiol 135: 293.Google Scholar
  51. Dempsey, E.W., and Morison, R.S., 1942, The interaction of certain spontaneous and induced cortical potentials, Am. J. Physiol 135: 301.Google Scholar
  52. De Robertis, E., and Schacht, J., 1974, “Neurochemistry of Cholinergic Receptors” Raven Press, New York.Google Scholar
  53. Desi, I., Dura, G., Gonczi, L., Kneffel, Z., Strohmayer, A., and Szabo, Z., 1975, Toxicity of malathion to mammals, aquatic organisms and tissue culture cells, Arch. Environ. Contam. Toxicol 34: 410.Google Scholar
  54. Domino, E.F., 1968, Cholinergic mechanisms and the EEG, Electroencephalogr. Clin. Neurophysiol 24: 292.PubMedGoogle Scholar
  55. Domino, E.F., and Wilson, A.E., 1973, Enhanced utilization of brain acetylcholine during morphine withdrawal in the rat, Nature 243: 285.PubMedGoogle Scholar
  56. Domino, E.F., and Yamamoto, K., 1965, Nicotine effect on the sleep cycle of the cat, Science 150: 631.Google Scholar
  57. Domino, E.F., Dren, A.T., and Yamamoto, K.I., 1967, Pharmacologic evidence for cholinergic mechanisms in neocortical and limbic activating systems, Prog. brain Res. 27: 331.Google Scholar
  58. Domino, E.F., Bartolini, A., Kawamura, H., 1977, Effects of reticular stimulation, d-amphetamine and scopolamine on acetylcholine release from the hippocampus of Brainstem transected cats, Arch. Int. Pharmacodyn. Ther. 225(2): 294.Google Scholar
  59. Dudar, J.D., and Szerb, J.C., 1969, The effect of topically applied atropine on resting and evoked cortical acetylcholine release, J. Physiol (Lond.)203: 141.Google Scholar
  60. Dun, N.J., and Karczmar, A.G., 1977, A comparison of the effect of theophylline and cyclic adenosine 3’5’ -monophosphate on the superior cervical ganglion of the rabbit by means of the sucrose-gap method, J. Pharmacol Exp. Ther. 202: 89.PubMedGoogle Scholar
  61. Dun, N.J., and Karczmar, A.G., 1978, Involvement of an interneuron in the generation of the slow inhibitory postsynaptic potential in mammalian sympathetic ganglia, Proc. Natl Acad. Sci. USA 75: 4029.PubMedGoogle Scholar
  62. Dun, N.J., Kaibara, K., and Karczmar, A.G., 1977a, Direct postsynaptic membrane effect of dibutyryl cyclic GMP on mammalian sympathetic neurons, Neuropharmacology 16: 115.Google Scholar
  63. Dun, N.J., Kaibara, K., andKarczmar, A.G., 1977b, Dopamine and adenosine 3’5’-mono- phosphate responses of single mammalian sympathetic neurons, Science 197: 118.Google Scholar
  64. Dura, G., Illes, I., Major, M., and Goenczi, C., 1975, Neurophysiological investigations with an organic phosphate compound, Acta. Physiol Acad. Sci. Hung. 44: 313.Google Scholar
  65. Eccles, J.C., 1973, “The Understanding of the brain,” McGraw Hill Co., New York.Google Scholar
  66. Eccles, J.C., Fatt, P., and Koketsu, K., 1954, Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurons, J. Physiol. (Lond) 126: 524.Google Scholar
  67. Echlin, F.A., 1975, Time course of development of supersensitivity to topical acetyl-choline in partially isolated cortex, Electroencephalogr. Clin. Neurophysiol. 38: 225.PubMedGoogle Scholar
  68. Echlin, F.A., and McDonald, J., 1954, The supersensitivity of chronically isolated cerebral cortex as a mechanisms in focal cortical epilepsy, Trans. Am. Neurol. Assoc. 79: 15.Google Scholar
  69. Endroczi, E., Schreiberg, G., and Lissak, K., 1963a, The role of central nervous activating and inhibitory structures in the control of pituitary-adrenocortical function. Effects of intracerebral cholinergic and adrenergic stimulation, Acta Physiol. Acad. Sci. Hung. 24: 211.Google Scholar
  70. Endroczi, E., Hartmann, G., and Lissak, K., 1963b, Effect of intracerebrally adminis-tered cholinergic and adrenergic drugs on neocortical and archicortical electrical activity, Acta Physiol Acad. Sci. Hung. 24: 199.Google Scholar
  71. Essig, C.F., Hampson, J.L., Bales, P.D., Willis, A., and Himwich, H.E., 1950, Effect of panparnit on brain wave changes induced by DFP, Science 111: 38.PubMedGoogle Scholar
  72. Essman, W.B., 1972, Neurochemical changes in ECS and ECT, Semin. Psychiatry 4: 61.Google Scholar
  73. Everett, G.M., 1974, Pharmacological studies of oxotremorine, in “Biochemical and Neurophysiological Correlates of Centrally Acting Drugs” (E. Trabucchi, R. Paoletti, and N. Canal., eds.), pp. 69–74, Pergamon Press, Oxford.Google Scholar
  74. Fairchild, M.D., Jenden, D.J., and Mickey, M.R., 1975, An application of long-term frequency analysis in measuring drug-specific alterations in the EEG of the cat, Electroencephalogr. Clin. Neurophysiol. 38: 331.Google Scholar
  75. Feldberg, W., and Fleishhauer, K., 1963, The hippocampus as the site of origin of the seizure discharge produced by tubocurarine acting from the cerebral ventricles, J. Physiol (Lond.) 168: 435.Google Scholar
  76. Feldbeig, W., and Vogt, M., 1948, Acetylcholine synthesis in different regions of the central nervous system, J. Physiol (Lond.) 107: 313.Google Scholar
  77. Ferguson, J.H., and Cornblath, D.R., 1975, Acetylcholine epilepsy: relationship of surface concentration, chronicity of denervation, and focus size, Exp. Neurol 46: 302.PubMedGoogle Scholar
  78. Ferguson, J.H., and Jasper, H.H., 1971, Laminar DC studies of acetylcholine-activated epileptiform discharge in cerebral cortex, Electroencephalogr. Clin. Neurophysiol 30: 311.Google Scholar
  79. Fink, M., 1966, Cholinergic aspects of convulsive therapy, J. Nerv. Ment. Dis. 24: 415.Google Scholar
  80. Floris, V., Morocutti, G., and Ayala, G.F., 1963, Azione della nicotina sulla attivita bioelectrica della corteccia, del talamo e dell’ ippocampo nel cognilio. Sull ‘azione di “arousal” e convulsivante primitiva sulle strutture ippocampo-talamiche, Boll Soc. Ital. Biol Sper. 38: 401.Google Scholar
  81. Fonnum, F., 1973, Recent developments in biochemical investigations of cholinergic transmission, Brain Res. 62: 495.Google Scholar
  82. Frazier, D.T., and Boyarski, L.L., 1967, Cholinergic properties of the relay functions of the primary afferent pathways, J. Pharmacol Exp. Ther. 156: 1.PubMedGoogle Scholar
  83. Gadea-Ciria, M., Stadler, H., Lloyd, K.G., and Bartholini, G., 1973, Acetylcholine release within the cat striatum during the sleep-wakefulness cycle, Nature 243: 518.PubMedGoogle Scholar
  84. Gardner, C.R., and Webster, R.A., 1977, Convulsant-anticonvulsant interactions on seizure activity and cortical acetylcholine release, Eur. J. Pharmacol 42: 241.Google Scholar
  85. Garrattini, S., Pujol, J.F., and Samanin, R., 1978, “Interactions Between Putative Neurotransmitters in the Brain,” Raven Press, New York.Google Scholar
  86. Gastaut, H., and Fischer-Williams, M., 1959, The physiopathology of epileptic seizures, in “Handbook of Physiology Sect I: Neurophysiology” (J. Fields, ed.), pp. 329–363.Google Scholar
  87. George, R., Haslett, W.L., and Jenden, D.J., 1964, A cholinergic mechanism in the brain stem reticular formation: Induction of paradoxical sleep, Int. J. Neuropharmacol 3: 541.PubMedGoogle Scholar
  88. Giorguieff, M.F., Le Floc’H, M.L., Glowinski, J., and Besson, M.J., 1977, Involvement of cholinergic presynaptic receptors of nicotinic and muscarinic types in the control of the spontaneous release of dopamine from striatal dopaminergic terminals in the rat, J. Pharmacol Exp. Ther. 200: 535.PubMedGoogle Scholar
  89. Glisson, S.N., Karczmar, A.G., and Barnes, L., 1974, Effects of DFP on acetylcholine, cholinesterase and catecholamines of several rabbit brain parts, Neuropharmacol 13: 623.Google Scholar
  90. Glowinski, J., and Karczmar, A.G., in press a, Interdependence of neurotransmitter systems in the CNS, in “Proceedings of the Seventh International Congress of Pharmacology” (J. Glowinski, and A.G. Karczmar, eds.), Pergamon Press, Oxford.Google Scholar
  91. Glowinski, J., and Karczmar, A.G., in press b, Concluding remarks on the symposium: Interdependence of neurotransmitter systems in the CNS, in “Proceedings of the Seventh International Congress of Pharmacology” (J. Glowinski, and A.G. Karczmar, eds.), Pergamon Press, Oxford.Google Scholar
  92. Greer, C.A., and Alpern, H.P., 1977, Mediation of myoclonic seizures by dopamine and clonic seizures by acetylcholine and GABA, Life Sci. 27: 385.Google Scholar
  93. Guerrero-Figueroa, R., Verster, F., DeB., Barros, A., and Heath, R.C., 1964, Cholinergic mechanisms in subcortical mirror focus and effects of topical application of 7-amino- butyric acid and acetylcholine, Epilepsia 5: 140.Google Scholar
  94. Guggenheimer, E.H., and Levinger, I.M., 1975, The effect of oxotremorine on the acetylcholine output from the CSF containing spaces, Experientia 31: 88.PubMedGoogle Scholar
  95. Guha, D., and Pradhan, S.N., 1976, Effects of nicotine on EEG and evoked potentials and their interactions with autonomic drugs, Neuropharmacology 15: 225.PubMedGoogle Scholar
  96. Guyenet, P., Agid, Y., Javoy, F., Beaujouan, J.C., Rossier, J., and Glowinski, J., 1975, Effects of dopaminergic receptor agonists and antagonists on the activity of the neostriatal cholinergic system, Brain Res. 84: 221.Google Scholar
  97. Hall, R.C., and Keane, P.E., 1975, Dopaminergic and cholinergic interactions in the caudate nucleus in relation to the induction of sleep in the cat, Br. J. Pharmacol. 54: 247.Google Scholar
  98. Hanigan, W.C., Scudder, C.L., and Karczmar, A.G., 1970, Adrenergic, serotonergic and cholinergic systems and electroconvulsive seizures in mice, Fed. Proc. 29: 486.Google Scholar
  99. Hanin, I., and Costa, E., 1976, Approaches used to estimate brain acetylcholine turnover rate in vivo; effects of drugs on brain acetylcholine turnover rate, in “Biology of Cholinergic Function” (A.M. Goldberg, and I. Hanin, eds.), pp. 355–377, Raven Press, New York.Google Scholar
  100. Haranath, P.S.R.K., Indira, G., and Krishnamurthy, A., 1977, Effects of cholinomimetic drugs and their antagonists injected into vertebral artery of unanaesthetized dogs, Pharmacol Biochem. Behav. 6: 259.PubMedGoogle Scholar
  101. Hemsworth, B.A., and Neal, M.J., 1968, The effect of central stimulant drugs on the release of acetylcholine from the cerebral cortex, Br. J. Pharmacol 32: 543.Google Scholar
  102. Hernandez-Peon, R., 1962, Sleep induced by localized or chemical stimulation of the foreBrain, jElectroencephalogr. Clin. Neurophysiol. 14: 423.Google Scholar
  103. Hernandez-Peon, R., 1965, Central neurohumoral transmission in sleep and wakefulness, in “Progress in brain Research, Sleep Mechanisms” (K. Akert, C. Bally, and J.P. Schade, eds.), pp. 96–116, Elsevier, Amsterdam.Google Scholar
  104. Hernandez-Peon, R., and Chavez-Ibarra, G., 1963, Sleep induced by electrical or chemical stimulation of the foreBrain, Electro encephalogr. Clin. Neurophysiol. (Suppl) 24: 188.Google Scholar
  105. Hernandez-Peon, R., Chavez-Ibarra, G., Morgane, P.J., and Timolaria, C., 1963, Limbic cholinergic pathways involved in sleep and behaviour, Exp. Neurol. 8: 93.Google Scholar
  106. Herz, A., and Zieglgansberger, W., 1968, The influence of microelectrophoretically applied biogenic amines, cholinomimetics and procaine on synaptic excitation in the corpus striatum, Int. J. Neuropharmacol. 7: 221.PubMedGoogle Scholar
  107. Hill, R.C., Simmonds, M.A., and Straughan, D.W., 1972, Convulsive properties of d- tubocurarine and cortical inhibition, Nature 240: 51.PubMedGoogle Scholar
  108. Hingtgen, J.N., and Aprison, M.H., 1976, Behavioral and environmental aspects of the cholinergic system, in “Biology of Cholinergic Function” (A.M. Goldberg, and I. Hanin, eds.), pp. 515–566, Raven Press, New York.Google Scholar
  109. Hobson, J.A., 1974, The cellular basis of sleep cycle control, in “Advances in Sleep Research” ( E.D. Weitzman, ed.), pp. 217–250, Spectrum, New York.Google Scholar
  110. Hokfelt, T., in press, Interdependence of neurotransmitter systems, anatomical basis, in “Interdependence of Neurotransmitter Systems in the CNS,” (J. Glowinski and A.G. Karczmar, eds.), Pergamon Press, Oxford.Google Scholar
  111. Holmstedt, B., 1959, Pharmacology of organophosphorus anticholinesterase agents, Pharmacol Rev. 11: 561.Google Scholar
  112. Hoover, D.B., Craig, C.R., and Colasanti, B.K., 1977, Cholinergic involvement in cobalt induced epilepsy in the rat, Exp. Brain Res. 29: 501.PubMedGoogle Scholar
  113. Ikonomoff, S.I., 1970, Anticholinesterase drugs and epileptic seizures, Br. J. Psychiatry 177: 619.Google Scholar
  114. Irmi, S.F., 1974a, Correlation between spontaneous behavior and cortical or hippocampal EEG in rats — dissociation after physostigmine, Acta. Nerv. Super. (Prague) 76: 48.Google Scholar
  115. Irmi, S.F., 1974b, Effects of scopolamine on EEG of cortex and hippocampus during spontaneous behavior in rat, Acta. Nerv. Super. (Prague) 16: 220.Google Scholar
  116. Irmi, S.F., 1977, Cortical and hippocampal EEG during spontaneous behavior in rats: Normal conditions and anticholinergic drugs proceedings, Acta. Nerv. Super. (Prague) 79: 145.Google Scholar
  117. Iwata, N., Sakai, Y., and Deguchi, T., 1971, Effects of physostigmine on the inhibition of trigeminal motoneurons by cutaneous impulses in the cat, Exp. Brain Res. 13: 519.PubMedGoogle Scholar
  118. Jacobowitz, D.M., 1978, Histochemical and micropunch analysis of aminergic and cholinergic pathways in the brain, in “Interrelationship Between Various Neurotransmitter Systems” (A.G. Karczmar, and J. Glowinski, eds.), Pergamon Press (in press).Google Scholar
  119. Jacobs, B.L., Henriksen, S.J., and Dement, W.C., 1972, Neurochemical bases of the PGO waves, Brain Res. 58: 157.Google Scholar
  120. Jalfre, M., Ruch-Monachon, M.A., and Haefely, W., 1974, Methods for assessing the interaction of agents with 5-hydroxytryptamine neurone and receptors in the brain, in “Advances in Biochemistry andPsychopharmacology,” ( E. Costa, and P. Greengard, eds.), pp. 121–134, Raven Press, New York.Google Scholar
  121. Jalowiec, J.E., Morgane, P.J., Stern, W.C., Zolovick, A.J., and Panksepp, J., 1973, Effects of midBrain tegmental lesions on sleep and regional brain serotonin and norepinephrine levels in cats, Exp. Neurol. 41: 610.Google Scholar
  122. Jasper, H.H., and Tessier, J., 1971, Acetylcholine liberation from cerebral cortex during paradoxical (REM) sleep, Science 172: 601.PubMedGoogle Scholar
  123. Javoy, F., Euvrard, C., Bockaert, J., and Glowinski, J., 1978, Action of “gabaminergic” and “serotonergic” drugs on the activity of striatal cholinergic interneurons, in “Interrelationship Between Various Neurotransmitter Systems” (A.G. Karczmar, and J. Glowinski, eds.), Pergamon Press, (in press).Google Scholar
  124. Jenden, D.J., 1977, Estimation of acetylcholine and the dynamics of its metabolism, in “Cholinergic Mechanisms and Psychopharmacology” (D.J. Jenden, ed.), pp. 139–162, Plenum Press, New York.Google Scholar
  125. Jewett, R.E., and Norton, S., 1966, Effects of some stimulant and depressant drugs on sleep cycles of cats,Exrp. Neurol. 15: 463.Google Scholar
  126. Jouvet, M., 1961, Telencephalic and rhombencephalic sleep in the cat, in “The Nature of Sleep” (G.E.W. Wolstenholme, and M. O’Conner, eds.), pp. 188’208, J. & A. Churchill, London.Google Scholar
  127. Jouvet, M., 1967, Neurophysiology of the states of sleep, in “The Neuro Sciences, A Study Program” (G.C. Quarton, T. Melnechuk, and F.U. Schmitt, eds.), pp. 529–544, University Press, New York.Google Scholar
  128. Jouvet, M., 1972, Some monoaminergic mechanisms controlling sleep and waking, in “Brain and Human Behavior” (A.G. Karczmar, and J.C. Eccles, eds.), pp. 131–160, Springer-Verlag, Berlin.Google Scholar
  129. Jouvet, M., 1975, Cholinergic mechanisms and sleep, in “Cholinergic Mechanisms” (P. Waser, ed.), pp. 455–476, Raven Press, New York.Google Scholar
  130. Karczmar, A.G., 1967, Pharmacologic, toxicologic and therapeutic properties of anti-cholinesterase agents, in “Physiological Pharmacology” (W.S. Root, and F.G. Hofman, eds.), pp. 163–322, Academic Press, New York.Google Scholar
  131. Karczmar, A.G., 1970a, Central cholinergic pathways and their behavioral implications, in “Principles of Psychopharmacology” (W.G. Clark, and J. del Giudice, eds.), pp. 57–86, Academic Press, New York.Google Scholar
  132. Karczmar, A.G., 1970b, History of the research with anticholinergic agents, in “Anti-cholinesterase Agents” (A.G. Karczmar, ed.), pp. 1–44, International Encyclopedia of Pharmacology and Therapeutics, Vol. 1, Section 13, Pergamon Press, Inc., Oxford.Google Scholar
  133. Karczmar, A.G., 1971, Possible mechanisms underlying the so-called “Divorce” phenomena of EEG desynchronizing actions of anticholinesterases, Presented at the Regional Midwest EEG Meeting, April 1971, Hines, V.A. Hospital.Google Scholar
  134. Karczmar, A.G., 1974a, The chemical coding via the cholinergic system: its organization and behavioral implications, in “Neurochemical Coding of Brain Function” (R.D. Myers, and R.R. Drucker-Colin, eds.), pp. 399–418, Adv. in Behav. Biol. Vol. 10, Plenum Press, New York.Google Scholar
  135. Karczmar, A.G., 1974b, Brain acetylcholine and seizures, in “Psychobiology of Convulsive Therapy” (M. Fink, S. Kety, J. McGaugh, and T.A. Williams, eds.), pp. 251–270, V. H. Winston, Washington, D.C.Google Scholar
  136. Karczmar, A.G., 1975, Cholinergic influences on behavior, in “Cholinergic Mechanisms” (P.G. Waser, ed.), pp. 501–529, Raven Press, New York.Google Scholar
  137. Karczmar, A.G., 1976, Central actions of acetylcholine, cholinomimetics, and related drugs, in “Biology of Cholinergic Function” (A.M. Goldberg, and I. Hanin, eds.), pp. 395–449, Raven Press, New York.Google Scholar
  138. Karczmar, A.G., 1977, Exploitable aspects of central cholinergic function, particularly with respect to the EEG, motor, analgesic and mental functions, in “Cholinergic Mechanisms and Psychopharmacology” (D.J. Jenden, ed.), pp. 679–708, Plenum Press, New York.Google Scholar
  139. Karczmar, A.G., 1978, Multitransmitter mechanisms underlying selected function, particularly aggression, learning and sexual behavior, in “Interdependence Between Various Neurotransmitter Systems” (A.G. Karczmar, and J. Glowinski, eds.), pp. 581–608, Pergamon Press, Oxford.Google Scholar
  140. Karczmar, A.G., in press, Mechanisms and clinical uses of peripherally and centrally acting cholinergic and anticholinergic drugs, Drug Therapy.Google Scholar
  141. Karczmar, A.G., and Dun, N.J., 1978, Cholinergic synapses: Physiological, pharmacological and behavioral considerations, in “Psychopharmacology: A Generation of Progress” (M.A. Lipton, A. DiMascio, and K.F. Killam, eds.), pp. 293–305, Raven Press, New York.Google Scholar
  142. Karczmar, A.G., and Glowinski, J., 1978, Interrelationships between various neurotransmitter systems, in Neuropsychopharmacology Proceedings of the Tenth Congress CINP ( P. Deniker, C. Radouco-Thomas, and A. Villeneuve, eds.), Pergamon Press, Oxford.Google Scholar
  143. Karczmar, A.G., Blachut, K., Ridlon, S., Gothelf, B., and Awad, O., 1963, Pharmacological actions in various neuroeffectors of single and combined administration of EPN and Malathion, Int. J. Neuropharmacol 2: 163.Google Scholar
  144. Karczmar, A.G., Longo, V.G., et al., 1970, Pharmacological model of paradoxical sleep: the role of cholinergic and monoamine systems, Physiol Behav. 5: 175.PubMedGoogle Scholar
  145. Karczmar, A.G., Scudder, C.L., and Richardson, D.L., 1973, Interdisciplinary approach to the study of behavior in related mice types, in “Neuro Sciences Research” (I. Kopin, ed.), pp. 159–244, Academic Press, New York.Google Scholar
  146. Kawamura, H., and Domino, EJ., 1969, Differential actions of m and n cholinergic agonists on the Brainstem activating system, Int. J. Neuropharmacol. 8: 105.PubMedGoogle Scholar
  147. Key, B.J., and Krzywoskinski, L., 1977, Electrocortical changes induced by the perfusion of noradrenaline, acetylcholine and their antagonists directly into the dorsal raphe nucleus of the cat, Br. J. Pharmacol 61: 291.Google Scholar
  148. Khinkova, L., Kaloianova, F., Dimov, S., and Atsev, E., 1975, Comparative study of the changes in the EEG and cholinesterase activity in experimental dipterex poisoning, Probl Khig. 1: 39.PubMedGoogle Scholar
  149. Kidokoro, Y., Kubota, K., Shuto, S., and Sumino, R., 1968, Possible interneurons responsible for reflex inhibition of motoneurons of jaw-closing muscles from inferior dental nerve, J. Neurophysiol. 31: 109.Google Scholar
  150. Kingsley, R.E., and Barnes, C.B., 1973, Olivo-cochlear inhibition during physostigmine- induced activity in pontal reticular formation in decerebrate cat, Exp. Neurol. 40: 43.PubMedGoogle Scholar
  151. Klawans, H.A., Westheimer, R., and Goetz, C.G., 1976, A pharmacological model of the pathophysiology of schizophrenia, Dis. Nerv. Syst. 36: 261.Google Scholar
  152. Klemm, W.R., 1976, Physiological and behavioral significance of hippocampal rhythmic, slow activity (“Theta rhythm”), Prog. Neurobiol. 6: 23.PubMedGoogle Scholar
  153. Knott, J.R., Ingram, W.R., and Correll, P.E., 1960, Some effects of subcortical stimulation on the bar pressing response, Arch. Neurol. 2: 416.Google Scholar
  154. Koehn, G.L., and Karczmar, A.G., 1978, Effect of diisopropylphosphofluoridate on analgesia and motor behavior in the rat, Prog. Neuropsychopharmacol. 2: 169.Google Scholar
  155. Koelle, G.B., 1963, Cytological distributions and physiological functions of choline-sterases, in “Handbuch der Experimentellen Pharmakologie, Ergazungswk, Choline- sterases and Anticholinesterase Agents, Vol. 15” (G.B. Koelle, ed.), pp. 189–298, Springer-Verlag, Berlin.Google Scholar
  156. Koelle, G.B., 1969, Significance of acetylcholinesterase in central synaptic transmission, Fed.Proc. 28: 95.PubMedGoogle Scholar
  157. Koelle, G.B., Koelle, W.A., Smyrl, E.G., Davis, R., and Nagle, A.F., 1977, Histochemical and pharmacological evidence of the function of butyrylcholinesterase, in “Cholinergic Mechanisms and Psychopharmacology” (D. J. Jenden, ed.), pp. 125–138, Plenum Press, New York.Google Scholar
  158. Koller, W.C., and Berry, C.A., 1976, Modification of evoked responses in the caudate nucleus by cholinergic agents, Neuropharmacology 15: 233.PubMedGoogle Scholar
  159. Korsak, R.J., and Sato, M.M., 1977, Effects of chronic organophosphate pesticide exposure on the central nervous system, Clin. Toxicol 11: 83.PubMedGoogle Scholar
  160. Kostowski, W., 1971, Effects of some cholinergic and anticholinergic drugs injected intracerebrally to the midline pontine area, Neuropharmacology 10: 595.PubMedGoogle Scholar
  161. Kramis, R., Vanderwolf, C.H., and Bland, B.H., 1975, Two types of hippocampal rhythmical slow activity in both rabbit and the rat: relations to behavior and effects of atropine, diethyl ether, urethane, and pentobarbital, Exp. Neurol 49: 58.PubMedGoogle Scholar
  162. Krnjevic, K., 1969, Central cholinergic pathways, in “Central Cholinergic Transmission and its Behavioral Aspects” (A.G. Karczmar, ed.), Fed. Proc. 28:115.Google Scholar
  163. Krnjevic, K., 1974, Chemical nature of synaptic transmission in vertebrates, Physiol Rev. 54: 418.Google Scholar
  164. Krnjevic, K., 1976, Acetylcholine receptors in vertebrate CNS, in “Handbook of Psychopharmacology” (L.L. Iversen, S.D. Iversen, and S.H. Snyder, eds.), pp. 97–125, Plenum Press, New York.Google Scholar
  165. Krnjevic, K., and Van Meter, W.G., 1976, Cyclic nucleotides in spinal cells, Can. J. Physiol. Pharmacol 54: 416.PubMedGoogle Scholar
  166. Krnjevic, K., Puil, E., and Werman, R., 1976, Is cyclic guanosine monophosphate the internal “second messenger” for cholinergic actions on central neurons? Can. J. Physiol Pharmacol 54: 112.Google Scholar
  167. Kubota, K., Kidokoro, Y., and Suzuki, J., 1968, Postsynaptic inhibition of trigeminal and lumbar motoneurons from the superficial radial nerve of the cat, Jpn. J. Physiol 18: 198.PubMedGoogle Scholar
  168. Kuhar, M.J., 1973, Neurotransmitter uptake: a tool in identifying neurotransmitter-specifïc pathways, Life Sci. 13: 1623.PubMedGoogle Scholar
  169. Kuhar, M.J., 1976, The anatomy of cholinergic neurons, in “Biology of Cholinergic Function” (A.M. Goldberg, and I. Hanin, eds.), pp. 3–27, Raven Press, New York.Google Scholar
  170. Kuhar, M.J., and Yamamura, H.I., 1976, Localization of cholinergic muscarinic receptors in rat brain by light microscopic radioautography, Brain Res. 110: 229.PubMedGoogle Scholar
  171. Kumagai, H., Sakai, F., and Otsuka, Y., 1962a, EEG responses to subcortical microinjection of d-tubocurarine chloride and other drugs in cats, Arch. Int. Pharmacodyn Ther. 139: 588.Google Scholar
  172. Kumagai, H., Sakai, F., and Otsuka, Y., 1962b, Analysis of central effect of d-tubocurarine chloride in the cat, Int. J. Neuropharmacol. 7: 157.Google Scholar
  173. Kupfer, D.J., and Edwards, D.J., 1978, Multitransmitter mechanisms and treatment of affective disease, in “Interrelationship Between Various Neurotransmitter Systems” (A.G. Karczmar, and J. Glowinski, eds.), Pergamon Press, Oxford (in press).Google Scholar
  174. Kurokawa, M., Machiyama, Y., and Kato, M., 1963, Distribution of acetylcholine in the brain during various states of activity, J. Neurochem. 10: 341.PubMedGoogle Scholar
  175. Langlois, J.M., and Poussart, Y., 1969, Electrocortical activity following cholinergic stimulation of the caudate nucleus in the cat, Brain Res. 75: 581.Google Scholar
  176. Levy, J., and Michel-Ber, E., 1967, Contribution a Fetude des cholinergiques et cholinolytiques centraux et perpheriques. II. Activites cholinergiques centrales de l’oxotremorine, Therapie 22: 87.Google Scholar
  177. Lewis, P.R., and Shute, C.C.D., 1967, The cholinergic limbic system: projections to hippocampal formation, medial cortex, nuclei of the ascending cholinergic reticular system, and the subfornical organs and supra-optic crest, Brain 90: 521.PubMedGoogle Scholar
  178. Libet, B., 1970, Generation of slow inhibitory and excitatory postsynaptic potentials, Fed. Proc. 29: 1945.PubMedGoogle Scholar
  179. Lipp, J.A., 1972, Effect of diazepam upon soman-induced seizure activity and convulsions, EEG Clin. Neurophysiol. 32: 557.Google Scholar
  180. Iipp, J.A., 1973, Effect of benzodiazepine derivatives on soman-induced seizure activity and convulsions in the monkey, Arch. Int. Pharmacodyn. Ther. 202: 244.Google Scholar
  181. Lipp, J.A., 1974, Effect of small doses of clonazepam upon soman-induced seizure activity and convulsions, Arch. Int. Pharmacodyn Ther. 210: 49.Google Scholar
  182. Livett, B.G., 1973, Histochemical visualization of peripheral and central adrenergic neurons, Br. Med. Bull. 29: 93.PubMedGoogle Scholar
  183. Lloyd, K.G., 1975, Special chemistry of the basal ganglia. 2. Distribution of acetylcholine, choline acetyltransferase and acetylcholinesterase, Pharmacol. Ther. (b) 1: 49.Google Scholar
  184. Loewi, O., 1937, Strychninerregung und Acetylcholingehalt des Zentralnervensystems, Naturwiss 25: 526.Google Scholar
  185. Longo, V.G., 1958, Effects of scopolamine and atropine on electroencephalorganic and behavioral reactions due to hypothalamic stimulation, J. Pharmacol. Exp. Ther. 116: 198.Google Scholar
  186. Longo, V.G., 1962, “Electroencephalograhic Atlas for Pharmacological Research,” Elsevier, Amsterdam.Google Scholar
  187. Longo, V.G., 1966, Mechanisms of the behavioral and electroencephalographic effects of atropine and related compounds, Pharmacol. Rev. 1: 965.Google Scholar
  188. Longo, V.G., and Loizzo, A., 1973, Effects of drugs on hippocampal O-rhythm. Possible relationships to learning and memory processes, in ‘‘Brain, Nerves and Synapses’’ (F.E. Bloom, and G.H. Acheson, eds.), pp. 46–54, Karger, Basel.Google Scholar
  189. Longo, V.G., and Silvestrini, G., 1957, Action of eserine and amphetamine on the electrical activity of rabbit Brain, J. Pharmacol. Exp. Ther. 120: 160.PubMedGoogle Scholar
  190. Longo, V.G., Von Berger, G.P., and Bouvet, D., 1954, Action of nicotine and of the “ganglioplegiques centraux” on the electrical activity of the Brain, J. Pharmacol. Exp. Ther. 111: 349.PubMedGoogle Scholar
  191. Longo, V.G., Giunta, F., et al., 1967, Effect of nicotine on the electroencephalogram of the rabbit, Ann. NY Acad. Sci. 142: 159–169.Google Scholar
  192. Longoni, R., Mulas, A., Oderfeld-Novak, B., Marconcini, I., and Pepeu, G., 1976, Effect of single and repeated electroshock applications on brain acetyltransferase activity in the rat, Neuropharmacology 75: 283.Google Scholar
  193. Losey, N.A., 1977, Effect of arecoline, phenamine and ethimizol on the distribution of electroencephalographic frequency characteristics, Farmakol. Toksikol. 40: 389.Google Scholar
  194. Luduena, F.P., and Hoppe, J.O., 1952, Local anesthetic activity, toxicity and irritancy of 2-alkoxy analogs of procaine and tetracaine, J. Pharmacol. Exp. Ther. 104: 40.PubMedGoogle Scholar
  195. Lundholm, B., and Sparf, B., 1975, The effect of atropine on the turnover of acetylcholine in the mouse brain, Eur. J. Pharmacol. 32(02): 287.Google Scholar
  196. Lynch, H.D., and Anderson, M.H., 1976, Atropine coma therapy in psychiatry: clinical observations over a 20 year period and a review of the literature, Dis. Nerv. Syst. 30: 648.Google Scholar
  197. Machne, K., and Unna, K.R.W., 1963, Actions at the central nervous system, in “Hand-buch der Experimentellen Pharmakologie, Erganzungswk, Vol. 15” (G.B. Koelle, ed.), pp. 679–700, Springer-Verlag, Berlin.Google Scholar
  198. Macintosh, F.C., and Collier, B., 1976, Neurochemistry of cholinergic terminals, in “Handbuck der Experimentellen Pharmakologie, Erganzungswk, Neuromuscular Junction, Vol 42”(E. Jaimis, ed.), pp. 99–228, Springer-Verlag, Berlin.Google Scholar
  199. MacLean, P.D., Flanigan, S., Flynn, J.P., Kim, C., and Stevens, J.R., 1955, Hippocampal function: tentative correlations of conditioning, EEG, drug and radioautographic studies, Yale J. Biol Med. 23: 389.Google Scholar
  200. Macphail, E.M., 1969, Cholinergic stimulation of dove diencephalon: A comparative study, Physiol Behav. 4: 655.Google Scholar
  201. Magherini, P.C., Pompeiano, O., and Thoden, U., 1971, The neurochemical basis of REM sleep: A cholinergic mechanism responsible for rhythmic activation of the vestibulo-occulomotor system, Brain Res. 35: 565.PubMedGoogle Scholar
  202. Magherini, P.C., Pompeiano, O., Thoden, U., 1972, Cholinergic mechanisms related to REM deep. I. Rhythmic activity of the vestibulo-oculomotor system induced by an anticholinesterase in the decerebrate cat, Arch. Int. Biol. 110: 234.Google Scholar
  203. Maiti, A., and Domino, E.F., 1961, Effects of methylated xanthines on the neuronally isolated cerebral cortex, Exp. Neurol 3: 18.PubMedGoogle Scholar
  204. Marczynski, T.J., 1967, Topical application of drugs to subcortical brain structures and related aspects of electrical stimulation, Ergebn. d. Physiol Biol Chem. Exp. Pharmakol. 59: 86.Google Scholar
  205. Marczynski, T.J., 1969, Invited discussion: postreinforcement synchronization and the cholinergic system, in “Symposium on Central Cholinergic Transmission and Its Behavioral Aspects” (A.G. Karczmar, ed.),Fed. Proc. 28:132.Google Scholar
  206. Marczynski, T.J., 1971, Cholinergic mechanism determines the occurrence of reward contingent positive variation (RCPV) in cat, Brain Res. 28: 71.PubMedGoogle Scholar
  207. Marczynski, T.J., and Burns, L.L., 1976, Reward contingent positive variation (RCPV) and post-reinforcement EEG synchronization (PRS) in the cat: Physiological aspects, the effects of morphine and LSD-25, and a new interpretation of cholinergic mechanisms, Gen. Pharmacol 7: 211.PubMedGoogle Scholar
  208. Marczynski, T.J., Rosen, A.J., and Hackett, J.T., 1968, Postreinforcement electrocortical synchronization and facilitation of cortical auditory potentials in appetitive instrumental conditioning, Electroencephalogr. Clin. Neurophysiol 24: 221.Google Scholar
  209. Marley, E., and Seller, T.J., 1972, Effects of muscarine given into the brain of fowls, Br. J. Pharmacol. 44: 413.PubMedGoogle Scholar
  210. Maulsby, R.L., 1971, An illustration of emotionally evoked theta rhythm in infancy: Hedonic hypersynchrony, Electroencephalogr. Clin. Neurophysiol 31: 151.Google Scholar
  211. Maynert, E.W., Marczynski, T.J., and Browning, R.A., 1975, The role of the neuro-transmitters in the epilepsies, Adv. Neurol 13: 19.Google Scholar
  212. McKenna, T., McCarley, R.W., Amatruda, T., Black, D., and Hobson, J.A., 1974, Effects of carbachol at pontine sites yielding long duration desynchronized sleep episodes, in “Sleep Research” (M.H. Chase, W.C. Stern, and P.L. Walter, eds.), BIS/BRI, Los Angeles.Google Scholar
  213. Mergner, T., Magherini, P.C., and Pompeiano, O., 1976, Temporal distribution of rapid eye movements and related monophasic potentials in the brain stem following injection of an anticholinesterase, Arch. Int. Biol 114: 15.Google Scholar
  214. Miller, R.F., Stavraky, G.W., and Woonton, G.A., 1940, Effects of eserine, acetylcholine and atropine on the electrocorticogram, J. Neurophysiol 5: 131.Google Scholar
  215. Minvielle, J., Cadilhac, J., and Passouant, M., 1954, Action of atropine on epileptics, Electroencephalogr. Clin. Neurophysiol 6: 162.Google Scholar
  216. Mirotvorskaia, G.N., 1968, Neurochemistry of epilepsy, Nevropatol Psikhiatr. 68: 609.Google Scholar
  217. Monnier, M., Kalberer, M., and Krupp, P., 1960, Functional antagonism between diffuse reticular and intralaminary recruiting projections in the medial thalamus, Exp. Neurol 2: 271.PubMedGoogle Scholar
  218. Montplaisir, J.Y., 1975, Cholinergic mechanisms involved in cortical activation during arousal, Electroencephalogr. Clin. Neurophysiol. 38: 263.PubMedGoogle Scholar
  219. Montplaisir, J.Y., and Sazie, E., 1973, Effects of eserine and scopolamine on neuronal after-discharges of the auditory cortex, Electroencephalogr. Clin. Neurophysiol. 35: 311.PubMedGoogle Scholar
  220. Morrell, F., 1967, Electrical signs of sensory coding, in “The Neuro Sciences” (J.C. Quarton, T. Melnechuk, and F.O. Schmitt, eds.), pp. 452–468, Rockfeller Press, New York.Google Scholar
  221. Moruzzi, G., 1939, Contribution a l’electrophysiologic du cortex moteur: Facilitation, apres discharge et epilepsie corticales, Arch. Internatl Physiol. 49: 33.Google Scholar
  222. Moruzzi, G., and Magoun, H.W., 1949, Brain stem reticular formation and activation of the EEG, Electroencephalogr. Clin. Neurophysiol. 7: 455.Google Scholar
  223. Myers, R.D., 1974, “Handbook of Drug and Chemical Stimulation of the Brain,” Rein hold, New York.Google Scholar
  224. Naruse, H., Kato, M., Kurokawa, M., Haba, R., and Yabe, T., 1960, Metabolic defects in a convulsive strain of mouse, J. Neurochem. 5: 359.PubMedGoogle Scholar
  225. Nauta, W.J.H., 1958, Hippocampal projections and related neural pathways to the mid-brain in the cat, Brain 81: 319.PubMedGoogle Scholar
  226. Nicoll, R.A., 1975, The action of acetylcholine antagonists on amino acid responses in the frog spinal cord, Br. J. Pharmacol 55: 449.PubMedGoogle Scholar
  227. Nishi, S., 1970, Cholinergic and adrenergic receptors at sympathetic preganglionic nerve terminals, Fed. Proc. 29: 1457.Google Scholar
  228. Nishi, S., 1974, Ganglionic transmission, in “The Peripheral Nervous System” (J.I. Hubbard, ed.), pp. 225–255, Plenum Press, New York.Google Scholar
  229. Nishi, S., Minota, S., and Karczmar, A.G., 1974, Primary afferent neurones: the ionic mechanism of GABA-mediated depolarization,Neuropharmacology 75: 215.Google Scholar
  230. Nistri, A., 1975, The effect of electrical stimulation and drugs on the release of acetyl-choline from the frog spinal cord, Naunyn Schmiedebergs Arch. Pharmacol 293: 269.Google Scholar
  231. Obrador, S., 1947, Hiperexcitabilidad de neurones motoras producida por aislamiento de areas de la corteza cerebral, Rev. Clin. Esp. 25: 171.Google Scholar
  232. Osumi, Y., Fujiwara, H., Oishi, R., and Takaori, S., 1975, Central cholinergic activation by chlorfenvinphos, and organophosphate in the rat, Jpn. J. Pharmacol 25: 41.Google Scholar
  233. Palkovits, M., and Jacobowitz, D.M., 1974, Topographic atlas of catecholamine and acetylcholinesterase-containing neurons in the rat brain. II. Hindbrain (mesencephalon, rhombencephalon), J. Comp. Neurol 157: 29.PubMedGoogle Scholar
  234. Palkovits, M., Richardson, J.S., and Jacobowitz, D.M., 1974, A histochemical study of ventral tegmental acetylcholinesterases-containing pathway following destructive lesions, Brain Res. 81: 183.PubMedGoogle Scholar
  235. Pedata, F., Mulas, A., Pepeu, I.M., and Pepeu, G., 1976, Changes in regional brain acetylcholine levels during drug-induced convulsions, Eur. J. Pharmacol 40: 329.PubMedGoogle Scholar
  236. Penaloza-Rojas, J.H., and Zeidenweber, J., 1965, Local and EEG effects of adrenaline and acetylcholine application within the olfactory bulb, Electroencephalogr. Clin. Neurophysiol 19: 8 8.Google Scholar
  237. Pepeu, G., 1974, The release of acetylcholine from the brain: An approach to the study of the central cholinergic mechanisms, in “Progress in Neurobiology” ( G.A. Kerkut, and J.W. Phillis, eds.), pp. 257–288, Pergamon Press, Oxford.Google Scholar
  238. Pepeu, G., Nistri, A., and Mantovani, P., 1978, Influence of different putative neuro-transmitters on ACh release from the brain and spinal cord, in “Interrelationships Between Various Neurotransmitter Systems” (A.G. Karczmar, and J. Glowinski, eds.), Pergamon Press, (in press).Google Scholar
  239. Petsche, H., 1962, Practical problems of localization by the EEG, Electroencephalogr. Clin. Neurophysiol. 74: 791.Google Scholar
  240. Phan, D.V., Bite, A., and Gyorgy, L., 1974, Oxotremorine on behavior and EEG of reserpine — pretreated rats, Acta Physiol Acad. Sci. Hung. 45: 131.PubMedGoogle Scholar
  241. Pierre, R., and Cahn, J., 1957, Considerations sur l‘utilite en electrophysiologe et en pharmacologic de l’evaluation quantitative de l’EEG. Quelques examples, in “International Symposium on Psychotropic Drugs” (S. Garattini, and V. Ghetti, eds.), pp. 299–300, Elsevier, Amsterdam.Google Scholar
  242. Phillis, J.W., and York, D.H., 1968, Pharmacological studies on a cholinergic inhibition in the cerebral cortex, Brain Res. 10: 291.Google Scholar
  243. Pompeiano, O., 1967, The neurophysiologies mechanisms of the postural and motor events during desynchronized sleep, Res. Publ. Assoc. Res. Nerv. Ment. Dis. 45: 351.PubMedGoogle Scholar
  244. Pope, A., Morris, A.A., Jasper, H., Elliot, K.A.C., and Penfield, W., 1947, Histochemical and action potentials studies on epileptogenic areas of cerebral cortex in man and the monkey, Res. Publ. Assoc. Res. Nerv. Ment. Dis. 26: 218.Google Scholar
  245. Pryor, G.T., 1968, Postnatal development of Cholinesterase,acetylcholinesterase, aromatic 1-amino acid decarboxylase and monoamine oxidase in C57B116 and DBA2 mice, Life Sci. 7: 861.Google Scholar
  246. Pujol, J.F., in press, Reciprocal interactions between serotonergic neurons and nor-adrenergic neurons originating from the locus coeruleus in the CNS, in “Interdependence of Neurotransmitter Systems in the CNS” (J. Glowinski, and A.G. Karczmar, eds.), Pergamon Press, Oxford.Google Scholar
  247. Pujol, J.F., Keane, P.E., and Jouvet, M., 1978, Importance of interactions between transmitter systems in relation to regulation of the sleep-waking cycle, in “Interrelationships Between Various Neurotransmitter Systems” (A.G. Karczmar, and J. Glowinski, eds.), Pergamon Press, (in press).Google Scholar
  248. Purpura, D.P., 1974, Intracellular studies of thalamic synaptic mechanisms in evoked synchronization and desynchronization of electrocortical activity, in “Basic Sleep Mechanisms” (O. Petre-Quadens, and J.D. Schlag, eds.), pp. 99–125, Academic Press, New York.Google Scholar
  249. Purpura, D.P., Frygyesi, T.L., McMurty, J.G., and Scarf, T., 1966, Synaptic mechanisms in thalamic regulation of cerebello-cortical projection activity, in “Thalamus” (D.P. Purpura, and M.D. Yahr, eds.), pp. 153–170, Columbia University Press, New York.Google Scholar
  250. Radii-Weiss, T., 1974, Power spectral density of hippocampal theta activity during rhombencephalic sleep, after physostigmine administration and during orienting reaction, Act. Nerv. Super. (Praha) 16: 126.Google Scholar
  251. Randic, M., Sminoff, R., and Straughan, D.W., 1964, Acetylcholine depression of cortical neurones, Exp. Neurol. 9: 236.PubMedGoogle Scholar
  252. Rech, R.H., and Domino, E.F., 1960, Effects of various drugs on activity of the neuronally isolated cerebral cortex, Exp. Neurol. 2: 364.PubMedGoogle Scholar
  253. Reeves, C., 1966, Cholinergic synaptic transmission and its relationship to behavior, Psychol Bull 65: 321.PubMedGoogle Scholar
  254. Richardson, I.W., and Szerb, J.C., 1974, The release of labelled acetylcholine and choline from cerebral cortical slices stimulated electrically, Br. J. Pharmacol 52: 499.PubMedGoogle Scholar
  255. Richter, D., and Crossland, J., 1949, Variation in acetylcholine content of the brain with physiological state, Am. J. Physiol 159: 241.Google Scholar
  256. Rieger, H., Okonek, S., 1975a, Proceedings: The EEG in alkylphosphate poisoning (anticholinesterase insecticides), Electroencephalogr. Clin. Neurophysiol. 39: 555.PubMedGoogle Scholar
  257. Rieger, H., and Okonek, S., 1975b, EEG in intoxication by cholinesterase inhibitors (organo-phosphate insecticides), Rev. Electroencephalogr. Neurophysiol Clin. 5: 98.PubMedGoogle Scholar
  258. Rinaldi, R., and Himwich, H., 1955, Cholinergic mechanisms involved in function of mesodiencephalic activating system, Arch. Neurol Psychiatry 73: 394.Google Scholar
  259. Rojas-Ramirez, J.A., and Drucker-Colin, R.R., 1973, Sleep induced by spinal cord cholinergic stimulation, Int. J. Neurosci. 5: 215.PubMedGoogle Scholar
  260. Roshchina, L.F., 1976, Electroencephalographs analysis of the central action of pyrazidol, Farmakol. Toksikol. 39: 391.Google Scholar
  261. Roth, R.H., and Bunney, B.S., 1976, Interaction of cholinergic neurons with other chemically defined neuronal systems in the CNS, in “Biology of Cholinergic Function” (A.M. Goldberg, and I. Hanin, eds.), pp. 379–394, Raven Press, New York.Google Scholar
  262. Ruch-Monachon, M.A., Jalfre, M., and Haefely, W., 1976a, Drugs and PGO waves in the lateral geniculate body of the curarized cat. I. PGO waves activity induced by R04-1284 and by b-chlorophenylalanine (PCPA) as a basis for neuropharmacological studies, Arch. Int. Pharmacodyn. Ther. 219: 205.Google Scholar
  263. Ruch-Monachon, M.A., Jalfre, M., and Haefely, W., 1976b, Drugs and PGO waves in the lateral geniculate body of the curarized cat. II. PGO wave activity and brain 5-hydroxy- tryptamine, Arch. Int. Pharmacodyn. Ther. 219: 269.PubMedGoogle Scholar
  264. Ruch-Monachon, M.A., Jalfre, M., and Haefely, W., 1976c, Drugs and PGO waves in the lateral geniculate of the curarized cat. Ill PGO wave activity and brain catecholamines, Arch. Int. Pharmacodyn. Ther. 219: 281.Google Scholar
  265. Ruch-Monachon, M.A., Jalfre, M., and Haefely, W., 1976d, Drugs and PGO waves in the lateral geniculate body of the curarized cat. IV The effects of acetylcholine, GABA and benzodiazepines on PGO wave activity, Arch. Int. Pharmacodyn. Ther. 219: 308.PubMedGoogle Scholar
  266. Ruch-Monachon, M.A., Jalfre, M., and Haefely, W., 1976e, Drugs and PGO waves in the lateral geniculate body of the curarized cat. V Miscellaneous compounds. Synopsis of the role of central neurotransmitters of PGO wave activity, Arch. Int. Pharmacodyn. Ther. 219: 326.PubMedGoogle Scholar
  267. Rump, S., Rabsztyn, T., and Kopec, J., 1974, Effects of cholinesterase inhibition on the visual evoked potentials in the rabbit and their modification with various drugs, Act. Nerv. Super. (Praha) 16: 224.Google Scholar
  268. Sasaki, K., Kawaguchi, S., Matsuda, Y., and Mizuno, N., 1972a, Electrophysiological studies on cerebello-cerebral projections in the cat, Exp. Brain Res. 16: 15.Google Scholar
  269. Sasaki, K., Matsuda, Y., Kawaguchi, S., and Mizuno, N., 1972b, On the cerebello-thalamocerebral pathway for the parietal cortex, Exp. Brain Res. 16: 89.PubMedGoogle Scholar
  270. Sasaki, K., Matsuda, Y., Oka, H., and Mizuno, N., 1975, Thalamo-cortical projections for recruiting responses and spindling-like responses in the parietal cortex, Exp. Brain Res. 22: 81.Google Scholar
  271. Sasaki, K., Shimono, T., Oka, H., Yamamoto, T., and Matsuda, Y., 1976, Effects of stimulation of the midbrain reticular formation upon thalamocortical neurones responsible for cortical recruiting responses, Exp. Brain Res. 26: 261.PubMedGoogle Scholar
  272. Schlesinger, K., Boggan, W., and Freedman, D., 1965, Genetics of audiogenic seizures. I. Relation to brain serotonin and norepinephrine in mice, Life Sci. 4: 2345.PubMedGoogle Scholar
  273. Schmidt, J., and Wolf, H., 1972, Influence of atropine and cholinesterase inhibitors on brain potentials caused by dental pulp stimulation, Acta Biol. Med. Ger. 29: 123.Google Scholar
  274. Schmitt, H., 1972, Actions centrales des substances parasympathomimetiques, in “Le Systeme Cholinergique” (G.G. Nahas, J.C. Salamagne, P. Viars, and G. Vourc’L, eds.), pp. 181–228, Librairie Arnette, Paris.Google Scholar
  275. Sellinger, O.Z., Azcurra, J.M., Ohlsson, W.G., Kohl, H.H., and Zand, R., 1972, Neurochemical correlates of drug-induced seizures: selective inhibition of cerebral protein synthesis by methionine sulfoximine, Fed. Proc. 31: 160.PubMedGoogle Scholar
  276. Shute, C.C.D., 1975, Chemical transmitter systems in the brain, Mod. Trends Neurol 6: 183.Google Scholar
  277. Shute, C.C.D., and Lewis, P.R., 1975, Cholinergic pathways 1. Histochemical localization, Pharmacol Ther. 1: 19.Google Scholar
  278. Simke, J.P., and Saelens, JX., 1977, Evidence for a cholinergic fiber tract connecting the thalamus with the head of the striatum of the rat, Brain Res. 126(3): 481.Google Scholar
  279. Sitaram, N., Wyatt, R.J., Dawson, S., and Gillin, J.C., 1976, REM sleep induction by physostigmine infusion during sleep, Science 191: 1281.PubMedGoogle Scholar
  280. Sjostrand, T., 1937, Potential changes in the cerebral cortex arising from cellular activity and the transmission of impulses in the white matter, J. Physiol (Lond.) 90: 41.Google Scholar
  281. Slater, P., 1968, The effects of triethylcholine and hemicholinium-3 on the acetylcholine content of rat Brain, Int. J. Neuropharmacol 7: 421.PubMedGoogle Scholar
  282. Smialowski, A., 1977, Comparison of effects of the intrahippocampal 5-hydroxy- tryptamine and acetylcholine on EEG and behavior of rabbits, Act. Nerv. Super. (Praha) 19(2): 156.Google Scholar
  283. Sobotka, T.J., 1969, “Studies on Acetylcholine Levels in Mouse Brain” Doctoral thesis, Loyola University, Chicago.Google Scholar
  284. Stadnicki, S.W., and Schaeppi, U., 1972, Nicotine changes in EEG and behavior after intravenous infusion in awake unrestrained cats, Arch. Int. Pharmacodyn. Ther. 197: 72.PubMedGoogle Scholar
  285. Starzl, T.E., Taylor, C.W., and Magoun, H.W., 1951, Ascending conduction in the reticular activating system with special reference to the diencephalon, J. Neurophysiol. 14: 461.PubMedGoogle Scholar
  286. Steriade, M., and Hobson, J.A., 1976, A neuronal activity during the sleep-waking cycle, Prog. Neurobiol. 6: 155.PubMedGoogle Scholar
  287. Sterman, M.B., and Clemente, C.B., 1962, ForeBrain inhibitory mechanisms. Sleep patterns induced by basal foreBrain stimulation in the behaving cat, Exp. Neurol 6: 103.PubMedGoogle Scholar
  288. Sterman, M.B., and Wyrwicka, W., 1967, EEG correlates of sleep: evidence for separate forebrain substrates, Brain Res. 6: 143.PubMedGoogle Scholar
  289. Stone, C.A., Meckelnberg, K.L., and Torchiana, M.A., 1958, Antagonism of nicotine- induced convulsions by ganglionic blocking agents, Arch. Int. Pharmacodyn. Ther. 117; 419.PubMedGoogle Scholar
  290. Stumpf, C., and Gogolak, G., 1967, Actions of nicotine upon the limbic system, Ann. NY Acad. Sci. 142: 143.Google Scholar
  291. Sutherland, E.W., and Robinson, G.A., 1966, The role of cyclic 3’,5’-AMP in responses to catecholamines and other hormones, Pharmacol Rev. 18: 145.PubMedGoogle Scholar
  292. Svenneby, G., and Roberts, E., 1974, Elevated acetylcholine contents in mouse brain after treatment with bicuculline and picrotoxin, J. Neurochem. 23: 215.Google Scholar
  293. Szerb, J.C., 1975, The release of acetylcholine from cerebral cortical slices in the presence or absence of an anticholinesterase, in “Cholinergic Mechanisms” (P.G. Waser, ed.), pp. 213–216, Raven Press, New York.Google Scholar
  294. Szerb, J.C., 1977, Characterization of presynaptic muscarinic receptors in central cholinergic neurons, in “Cholinergic Mechanisms and Psychopharmacology” (D.J. Jenden, ed.), pp. 49–60, Plenum Press, New York.Google Scholar
  295. Takahashi, R., Nasu, T., Tamura, T., and Kariya, T., 1961, Relationship of ammonia and acetylcholine levels to brain excitability, J. Neurochem. 7: 103.Google Scholar
  296. Tan, U., 1977, Electrocorticographic changes induced by topically applied succinylcholine and biperiden, Electroencephalogr. Clin. Neurophysiol 42: 252.PubMedGoogle Scholar
  297. Teitelbaum, H., Lee, J.F., and Johannessen, J.N., 1975, Behaviorally evoked hippocampal theta waves: a cholinergic response, Science 188: 1114.PubMedGoogle Scholar
  298. Tower, D.B., and McEachern, D., 1949, Acetylcholine and neuronal activity. II. Acetyl-choline and cholinesterase activity in the cerebrospinal fluids of patients with epilepsy, Can. J. Res. 27: 120.PubMedGoogle Scholar
  299. Trabucchi, M., Cheney, D.L., Hanin, I., and Costa, E., 1975a, Application of principles of steady-state kinetics to the estimation of brain acetylcholine turnover rate: Effects of oxotremorine and physostigmine, J. Pharmacol Exp. Ther. 194: 51.Google Scholar
  300. Trabucchi, M., Cheney, D.L., Racagni, C., and Costa, E., 1975b, In vivo inhibition of striatal acetylcholine turnover by L-DOPA, apomorphine and (+)-amphetamine, brain Res. 85; 130.Google Scholar
  301. Tripod, J., 1957, Characterisation generale des effets pharmacodynamiques de substances psychotropiques, in “Psychotropic Drugs” (S. Garattini, and V. Ghetti, eds.), pp. 437–447, Elsevier, Amsterdam.Google Scholar
  302. Ulus, I.H., Wurtman, R.J., Scally, M.C., and Hirsch, M.J., 1977, Effect of choline on cholinergic function, in “Cholinergic Mechanisms and Psychopharmacology” (D.J. Jenden, ed.), pp. 525–538, Plenum Press, New York.Google Scholar
  303. Usdin, E., 1970, Reactions of cholinesterases with substrates, inhibitors and reactivators, in “Anticholinesterase Agents” (A.G. Karczmar, ed.), pp. 47–354, International Encyclopedia of Pharmacology & Therapeutics, Vol. 1, Section 13, Pergamon Press, Oxford.Google Scholar
  304. Van Meter, W.G., 1969, “Central Nervous System Responses to Anticholinesterase in Rabbits: Evidence for a Non-inhibitory Action and for an Adrenergic Link,” Ph.D. Thesis, Loyola University, Chicago.Google Scholar
  305. Van Meter, W.G., and Karczmar, A.G., 1971, An effect of physostigmine on the central nervous system of rabbits, related to brain levels of norepinephrine, Neuropharmacology 10: 319.Google Scholar
  306. Van Meter, W.G., Karczmar, A.G., and Fiscus, R.R., 1978, CNS effects of anticholin-esterases in the presence of inhibited cholinesterases, Arch. Int. Pharmacodyn. Ther. 23: 249.Google Scholar
  307. Vanderwolf, G.H., 1975, Neocortical and hippocampal activation in relation to behavior: Effects of atropine, phenothiazines and amphetamine, J. Comp. Physiol. Psychol. 88: 300.PubMedGoogle Scholar
  308. Vas, C.J., Delgado, J.M.R., and Glasser, G., 1969, Effect of anticholinergic drugs on epileptic activity from amygdala and frontal cortex, Neurology 79: 234.Google Scholar
  309. Vazquez, A.J., and Krip, G., 1973, Evidence for an inhibitory role for acetylcholine, catecholamines, and serotonin on the cerebral cortex, in “Chemical Modulation of Brain Function” (H.C. Sabelli, ed.), Raven Press, New York.Google Scholar
  310. Velluti, R., and Hernandez-Peon, R., 1963, Atropine blockade within a cholinergic hyponogenic circuit, Exp. Neurol 8: 20.Google Scholar
  311. Vosu, H., and Wise, R.A., 1975, Cholinergic seizure kindling in the rat: Comparison of caudate, amygdala and hippocampus, Biol 13: 419.Google Scholar
  312. Votava, Z., 1967, Pharmacology of the central cholinergic synapses, Ann. Rev. Pharmacol 7: 223.PubMedGoogle Scholar
  313. Ward, A.A., Jasper, H.J., and Pope, A., 1969, Clinical and experimental challenges of the epilepsies, in “Basic Mechanism of the Epilepsies” (H. J. Jasper, A.A. Ward, and A. Pope, eds.), pp. 1–12, Little Brown, Boston.Google Scholar
  314. Wescoe, W.C., Green, R.E., McNamara, B.P., and Krop, S., 1948, The influence of atropine and scopolamine on the central effects of DFP, J. Pharmacol. Exp. Ther. 92: 63.PubMedGoogle Scholar
  315. Whishaw, I.Q., Robinson, T.E., and Schallert, T., 1976, Intraventricular anticholinergics do not block cholinergic hippocampal RSA or neocortical desynchronization in the rabbit or rat, Pharmacol Biochem. Behav. 5: 275.PubMedGoogle Scholar
  316. Wilder, A., 1952, Pharmacologic dissociation of behavior and EEG sleep patterns in dogs: Morphine n-allyl normorphine and atropine, Proc. Soc. Exp. Biol Med. 79: 261.Google Scholar
  317. Williams, D., and Russell, W.R., 1941, Action of eserine and prostigmine on epileptic cerebral discharges, Lancet 1: 476.Google Scholar
  318. Wills, J.H., 1970, Toxicity of anticholinesterases and treatment of poisoning, in “Anti-cholinesterase Agents” (A.G. Karczmar, ed.), pp. 355–469, ¿ternati. Encyclop. Pharmacol. Therap, Vol. 1, Section 13, Pergamon Press, Oxford.Google Scholar
  319. Wolff, V.H., 1956, Die Behandlung Zerebraler Anfalle mit Scopolamine. Ein Betrag zur Klinik des “Synkopalin” Syndroms, Dtsch. Med. Wochenschr. 81: 1358.PubMedGoogle Scholar
  320. Woody, C.D., Carpenter, D.O., Grieu, E., Knispel, J.D., Crow, T.J., and Black-Cleworth, P., 1974, Prolonged increases in resistance of neurons in cat motor cortex following extracellular iontophoretic application of acetylcholine (ACh) and intracellular current injection, Fed. Proc. 33: 399.Google Scholar
  321. Wurtman, R.J., Larin, F., Mostafapour, S., and Fernstrom, J.D., 1974, Brain catechol synthesis: Control by brain tyrosine concentration, Science 185: 183.PubMedGoogle Scholar
  322. Wurtman, R.J., 1976, Control of neurotransmitter synthesis by precursor availability and food consumption, in “Subcellular Mechanisms in Reproductive Neuroendocrinology” ( F. Naftolin, ed.), pp. 149–166, Elsevier, Amsterdam.Google Scholar
  323. Yamaguchi, N., Marczynski, T.J., and Ling, G.M., 1963, The effects of electrical and chemical stimulation of the preoptic region and some nonspecific thalamic nuclei in unrestrained, waking animals, Electroencephalogr. Clin. Neurophysiol. 15: 154.Google Scholar
  324. Yamaguchi, N., Ling, G.M., and Marczynski, T.J., 1964, The effects of chemical stimulation of the preoptic region, nucleus centralis medialis or brain stem reticular formation with regard to sleep and wakefulness, Recent Adv. Biol Psychiatry 6: 9.Google Scholar
  325. Yamamoto, K.I., and Domino, E.F., 1967, Cholinergic agonist-antagonist interactions on neocortical and limbic EEG activation, Int. J. Neuropharmacol. 6: 357.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • A. G. Karczmar
    • 1
  1. 1.Department of PharmacologyLoyola University Stritch School of MedicineMaywoodUSA

Personalised recommendations