Axonal Transport of Complex Carbohydrates

  • J. S. Elam

Abstract

The classic study of Weiss and Hiscoe (1948) provided an early indication that bulk translocation of intracellular material occurs along axons. They observed that a constricting cuff placed on a nerve caused accumulation of axoplasm proximal to the constriction. When the cuff was removed, the bolus of axoplasm migrated distally along the nerve at a rate of 1–2 mm/day. In the following years, the technique of nerve constriction was used to document the intraaxonal migration of a variety of enzymes and subcellular organelles (reviewed by Grafstein, 1969). Considerable impetus was provided to axonal-transport work by the discovery that various isotopically labeled substances could be used to trace the movement of axonal constituents (Ochs and Burger, 1958; Weiss, 1961; Miani, 1962; Droz and Leblond, 1963; Taylor and Weiss, 1965). These studies led to a general acceptance of the use of radioisotopes to label axonally transported molecules, producing a flood of publications from the mid-1960’s up to the present.

Keywords

Migration Carbohydrate Retina Fractionation Proline 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambron, R. T., and Treistman, S. N., 1977, Glycoproteins are modified in the axon of R2, the giant neuron of Aplysia californica, after intra-axonal injection of 3H-acetylgalactosamine, Brain Res. 121: 287–309.PubMedCrossRefGoogle Scholar
  2. Ambron, R. T., Goldman, J. E., and Schwartz, J. H., 1974, Axonal transport of newly synthesized glycoproteins in a single identified neuron of Aplysia californica, J. Cell Biol. 61: 655–675.Google Scholar
  3. Ambron, R. T., Goldman, J. E., and Schwartz, J. H., 1975, Effect of inhibiting protein synthesis on axonal transport of membrane glycoproteins in an identified neuron of Aplysia, Brain Res. 94: 307–323.PubMedCrossRefGoogle Scholar
  4. Autilio-Gambetti, L., Gambetti, P., and Shafer, B., 1975, Glial and neuronal contribution to proteins and glycoproteins recovered in myelin fractions, Brain Res. 84: 336–340.PubMedCrossRefGoogle Scholar
  5. Barker, J. L., Hoffman, P. N., Gainer, H., and Lasek, R. J., 1975, Rapid transport of proteins in the sonic motor system of the toadfish, Brain Res. 97: 291–301.PubMedCrossRefGoogle Scholar
  6. Barondes, S. H., 1968, Incorporation of radioactive glucosamine into macromolecules at nerve endings, J. Neurochem. 15: 699–706.PubMedCrossRefGoogle Scholar
  7. Barondes, S. H., and Dutton, G. R., 1969, Acetoxycycloheximide effect on synthesis and metabolism of glucosamine-containing macromolecules in brain and in nerve endings, J. Neurobiol. 1: 99–110.PubMedCrossRefGoogle Scholar
  8. Baux, G., Simonneau, M., Tauc, L., 1978, Blocking action of Ruthenium Red on cholinergic and non-cholinergic synapses: Possible involvement of sialic acid–containing substrates in neurotransmission, Brain Res. 152: 633–638.PubMedCrossRefGoogle Scholar
  9. Bennett, G., DiGiamberardino, L., Koenig, H. L., and Droz, B., 1973, Axonal migration of protein and glycoprotein to nerve endings. II. Radioautographic analysis of the renewal of glycoproteins in nerve endings of chicken ciliary ganglion after intracerebral injection of 3H fucose and 3H glucosamine, Brain Res. 60: 129–146.PubMedCrossRefGoogle Scholar
  10. Bock, E., and Jorgensen, O. S., 1975, Rat brain synaptic vesicles and synaptic plasma membranes compared by crossed immune-electrophoresis, FEBS Lett. 52: 37–39.PubMedCrossRefGoogle Scholar
  11. Bondy, S. C., and Madsen, C. J., 1971, Development of rapid axonal flow in the chick embryo, J. Neurobiol. 2: 279–286.PubMedCrossRefGoogle Scholar
  12. Bondy, S. C., and Madsen, C. J., 1974, The extent of axoplasmic transport during development, determined by migration of various radioactively–labelled materials, J. Neurochem. 23: 905–910.PubMedCrossRefGoogle Scholar
  13. Bosmann, H. B., and Hemsworth, B. A., 1970, Incorporation of amino acids and monosaccharides into macromolecules by isolated synaptosomes and synaptosomal mitochondria, J. Biol. Chem. 245: 363–371.PubMedGoogle Scholar
  14. Brandt, A. E., Distler, J. J., and Jourdian, G. W., 1975, Biosynthesis of chondroitin sulfate proteoglycan: Subcellular distribution of glycosyl transferases in embryonic chick brain, J. Biol. Chem. 250: 3996–4006.PubMedGoogle Scholar
  15. Bray, J. J., and Austin, L., 1969, Axoplasmic transport of 14C proteins at two rates in chicken sciatic nerve, Brain Res. 12: 230–233.PubMedCrossRefGoogle Scholar
  16. Brunngraber, E. G., 1970, Glycoproteins in neural tissue, in: Protein Metabolism of the Nervous System ( A. Lajtha, ed.), pp. 383–407, Plenum Press, New York and London.Google Scholar
  17. Brunngraber, E. G., and Javaid, J. I., 1975, Subcellular and anatomical distribution in rat brain of glycoproteins that contain mannose-rich heteropolysaccharide chains, Biochim. Biophys. Acta 404: 67–73.PubMedCrossRefGoogle Scholar
  18. Cancalon, P., and Beidler, L. M., 1975, Distribution along the axon and into various subcellular fractions of molecules labeled with 3H leucine and rapidly transported in the garfish olfactory nerve, Brain Res. 89: 225–244.PubMedCrossRefGoogle Scholar
  19. Casagrande, V. A., and Harting, J. K., 1975, Transneuronal transport of tritiated fucose and proline in the visual pathways of tree shrew Tupaia glis, Brain Res. 96: 367–372.PubMedCrossRefGoogle Scholar
  20. Crossland, W. J., Currie, J. R., Rogers, L. A., and Cowan, W. M., 1974, Evidence for a rapid phase of axoplasmic transport at early stages in the development of the visual system of the chick and frog, Brain Res. 78: 483–489.PubMedCrossRefGoogle Scholar
  21. Cuenod, M., Sandri, C., and Akert, K., 1972, Enlarged synaptic vesicles in optic nerve terminals induced by intraocular injection of colchicine, Brain Res. 39: 285–296.PubMedCrossRefGoogle Scholar
  22. Cuenod, M., Marko, P., and Niederer, E., 1973, Disappearance of particulate tectal protein during optic nerve degeneration in the pigeon, Brain Res. 49: 422–426.PubMedCrossRefGoogle Scholar
  23. Den, H., Kaufman, B., McGuire, E. J., and Roseman, S., 1975, The sialic acids. XVIII. Subcellular distribution of seven glycosyltransferases in embryonic chicken brain, J. Biol. Chem. 250: 739–746.PubMedGoogle Scholar
  24. DeVries, G. H., and Barondes, S. H., 1971, Incorporation of 14C N–acetyl neuraminic acid into brain glycoproteins and gangliosides in vivo, J. Neurochem. 18: 101–105.CrossRefGoogle Scholar
  25. DiGiamberardino, L., Bennett, G., Koenig, H. L., and Droz, B., 1973, Axonal migration of protein and glycoprotein to nerve endings. III. Cell fraction analysis of chicken ciliary ganglion after intracerebral injection of precursors of proteins and glycoproteins, Brain Res. 60: 147–159.CrossRefGoogle Scholar
  26. Drager, U. C., 1974, Autoradiography of tritiated proline and fucose transported transneuronally from the eye to the visual cortex in pigmented and albino mice, Brain Res. 82: 284–292.PubMedCrossRefGoogle Scholar
  27. Droz, B., 1973, Renewal of synaptic proteins, Brain Res. 62: 383–394.PubMedCrossRefGoogle Scholar
  28. Droz, B., 1975, Synthetic machinery and axoplasmic transport: Maintenance of neuronal connectivity, in: The Nervous System, Vol. 1, The Basic Neurosciences ( D. B. Tower, ed.), pp. 111–127, Raven Press, New York.Google Scholar
  29. Droz, B., and Leblond, C. P., 1963, Axonal migration of proteins in the central nervous system and peripheral nerves as shown by radioautography, J. Comp. Neurol. 121: 325–345.PubMedCrossRefGoogle Scholar
  30. Droz, B., Rambourg, A., and Koenig, H. L., 1975, The smooth endoplasmic reticulum: Structure and role in the renewal of axonal membrane and synaptic vesicles by fast axonal transport, Brain Res. 93: 1–13.PubMedCrossRefGoogle Scholar
  31. Dutton, G. R., Haywood, P., and Barondes, S. H., 1973, 14C glucosamine incorporation into specific products in the nerve ending fraction in vivo and in vitro, Brain Res. 57:397–408.PubMedCrossRefGoogle Scholar
  32. Edstrom, A., and Mattsson, H., 1972, Rapid axonal transport in vitro in the sciatic system of the frog of fucose-, glucosamine-, and sulfate-containing material, J. Neurochem. 19: 1717–1729.PubMedCrossRefGoogle Scholar
  33. Edstrom, A., and Mattsson, 1973, Electrophoretic characterization of leucine-, glucosamine- and fucose-labelled proteins rapidly transported in frog sciatic nerve, J. Neurochem. 21: 1499–1507.PubMedCrossRefGoogle Scholar
  34. Elam, J. S., and Agranoff, B. W., 1971a, Rapid transport of protein in the optic system of the goldfish, J. Neurochem. 18: 375–387.PubMedCrossRefGoogle Scholar
  35. Elam, J. S., and Agranoff, B. W., 19716, Transport of proteins and sulfated mucopolysaccharides in the goldfish visual system, J. Neurobiol. 2:379–390.Google Scholar
  36. Elam, J. S., and Peterson, N. W., 1976, Axonal transport of sulfated glycoproteins and muco–polysaccharides in the garfish olfactory nerve, J. Neurochem. 26: 845–850.PubMedCrossRefGoogle Scholar
  37. Elam, J. S., and Peterson, N. W., 1979. Axonal transport of glycoproteins in the garfish olfactory nerve: Isolation of high molecular weight glycopeptides labeled with 3H fucose and 3H glucosamine (submitted).Google Scholar
  38. Elam, J. S., Goldberg, J. M., Radin, N. S., and Agranoff, B. W., 1970, Rapid axonal transport of sulfated mucopolysaccharide proteins, Science 170: 458–460.PubMedCrossRefGoogle Scholar
  39. Elam, J. S., Peterson, N. W., and Ripellino, J. A., 1977, High molecular weight glycopeptides from axonally transported glycoproteins, Trans. Am. Soc. Neurochem. 8: 254.Google Scholar
  40. Engelhardt, J. K., Ishikawa, K., Mori, J., and Shimabukuro, Y., 1977, Neurotrophic effects on the electrical properties of cultured muscle produced by conditioned medium from spinal cord explaints, Brain Res. 128: 243–248.PubMedCrossRefGoogle Scholar
  41. Festoff, B. W., Appel, S. H., and Day, E., 1971, Incorporation of 14C glucosamine into synap– tosomes in vitro, J. Neurochem. 18: 1871–1886.PubMedCrossRefGoogle Scholar
  42. Forman, D. S., 1971, A symmetrical double-label method for studying the rapid axonal transport of radioactivity from labelled D-glucosamine in the gold-fish visual system, Acta Neuropathol. (Berlin) Suppl. V:171–178.Google Scholar
  43. Forman, D. S., and Ledeen, R. W., 1972, Axonal transport of gangliosides in the goldfish optic nerve, Science 177: 630–633.PubMedCrossRefGoogle Scholar
  44. Forman, D. S., McEwen, B. S.,and Grafstein, B., 1971, Rapid transport of radioactivity in goldfish optic nerve following injections of labelled glucosamine, Brain Res. 28: 119–130.Google Scholar
  45. Forman, D. S., Grafstein, B., and McEwen, B. S., 1972, Rapid axonal transport of 3H fucosyl glycoproteins in the goldfish optic system, Brain Res. 48: 327–342.PubMedCrossRefGoogle Scholar
  46. Fried, R. C., and Blaustein, M. P., 1976, Synaptic vesicle recycling in synaptosomes in vitro, Nature (London) 261: 255–256.Google Scholar
  47. Frizell, M., and Sjostrand, J., 1974a, Transport of proteins, glycoproteins and cholinergic enzymes in regenerating hypoglossal neurons, J. Neurochem. 22: 845–850.PubMedCrossRefGoogle Scholar
  48. Frizell, M., and Sjostrand, J., 19746, The axonal transport of3H fucose labelled glycoproteins in normal and regenerating peripheral nerves, Brain Res. 78:109–123.Google Scholar
  49. Frizell, M., McLean, W. G., and Sjostrand, J., 1976, Retrograde axonal transport of rapidly migrating labelled proteins and glycoproteins in regenerating peripheral nerves, Neurochem. 27: 191–196.CrossRefGoogle Scholar
  50. Geinisman, Y., Bondareff, W., and Telser, A., 1977, Transport of 3H fucose labelled glycoproteins in the septo-hippocampal pathway of young adult and senescent rats, Brain Res. 125: 182–186.PubMedCrossRefGoogle Scholar
  51. Gombos, G., Morgan, I. G., Waehneldt, T. V., Vincendon, G., and Breckenridge, W. C., 1972, Glycoproteins of the synaptosomal plasma membrane, Adv. Exp. Med. Biol. 25: 101–113.Google Scholar
  52. Goodrum, J. F., Toews, A. D.,and Morell, P., 1978, Rapid axonal transport of3H fucose and 35S sulfate labelled macromolecules in rat visual system, Soc. Neurosci. Abs. 4: 33.Google Scholar
  53. Grafstein, B., 1969, Axonal transport: Communication between soma and synapse, Adv. Biochem. Psychopharmacol. 1: 11–25.PubMedGoogle Scholar
  54. Grafstein, B., 1975a, Principles of anterograde axonal transport in relation to studies of neuronal connectivity, in: The Use of Axonal Transport for Studies of Neuronal Connectivity ( W. M. Cowan and M. Cuenod, eds.), pp. 49–67, Elsevier, Amsterdam.Google Scholar
  55. Grafstein, B., 1975b, The eyes have it: Axonal transport and regeneration in the optic nerve, in: The Nervous System, Vol. 1, The Basic Neurosciences ( D. B. Tower, ed.), pp. 147–151, Raven Press, New York.Google Scholar
  56. Grafstein, B., 1977, Axonal transport: The intracellular traffic of the neurone, in: Handbook of the Nervous System, Vol. I, Cellular Biology of Neurones ( E. R. Kandel, ed.), American Physiological Society, Washington, D.C.Google Scholar
  57. Grafstein, B., and Laureno, R., 1973, Transport of radioactivity from eye to visual cortex in the mouse, Exp. Neurol 39: 44–57.PubMedCrossRefGoogle Scholar
  58. Gray, E. G., and Whittaker, V. P., 1962, The isolation of nerve endings from brawn: An electron microscopic study of cell fragments derived from homogenization and centrifugation, J. Anat. 96: 79–86.PubMedGoogle Scholar
  59. Gremo, F., and Marchisio, P. C., 1975, Dynamic properties of axonal transport of proteins and glycoproteins: A study based on the effects of metaphase blocking drugs in the developing optic pathway of chick embryos, Cell Tissue Res. 161: 303–316.PubMedCrossRefGoogle Scholar
  60. Gremo, F., Sjostrand, J., and Marchisio, P. C., 1974, Radioautographic analysis of 3H–fucose labelled glycoproteins transported along the optic pathway of chick embryos, Cell Tissue Res. 153: 465–476.PubMedCrossRefGoogle Scholar
  61. Gross, G. W., and Beidler, L. M., 1973, Fast axonal transport in the C–fibers of the garfish olfactory nerve, J. Neurobiol 4: 413–428.PubMedCrossRefGoogle Scholar
  62. Gross, G. W., and Beidler, L. M., 1975, A quantitative analysis of isotope concentration and rapid transport velocities in the C–fibers of the garfish olfactory nerve, J. Neurobiol 6: 213–232.PubMedCrossRefGoogle Scholar
  63. Gurd, J. W., 1978, Biosynthesis of synaptic membranes. Incorporation of 3H leucine into proteins and glycoproteins of rat brain synaptic membrane, Brain Res. 147: 201–204.PubMedCrossRefGoogle Scholar
  64. Guth, L., 1974, Axonal regeneration and functional plasticity in the central nervous system, Exp. Neurol 45: 606–654.PubMedCrossRefGoogle Scholar
  65. Heacock, A. M., and Agranoff, B. W., 1977, Reutilization of precursor following axonal transport of 3H proline–labelled protein, Brain Res. 122: 243–254.PubMedCrossRefGoogle Scholar
  66. Held, I., and Young, I. J., 1972, Transport of radioactivity derived from labelled N–acetylglucos– amine in mammalian motor axons, J. Neurobiol 3: 153–161.PubMedCrossRefGoogle Scholar
  67. Heslop, J. P., 1975, Axonal flow and fast transport in neurons, Adv. Comp. Physiol Biochem. 6: 75–163.PubMedGoogle Scholar
  68. Heuser, J. E., and Reese, T. S., 1973, Evidence for recycling of synaptic vesicles membrane during transmitter release at the frog neuromuscular junction, J. Cell Biol 57: 315–344.PubMedCrossRefGoogle Scholar
  69. Hirosawa, K., and Young, R. W., 1971, Autoradiographic analysis of sulfate metabolism in the cerebellum of the mouse, Brain Res. 30: 295–309.PubMedCrossRefGoogle Scholar
  70. Holm, M., 1972, Gangliosides of the optic pathway: Biosynthesis and biodegradation studied in vivo, J. Neurochem. 19: 623–629.PubMedCrossRefGoogle Scholar
  71. Karlsson, J.-O., and Linde, A., 1977, Axonal transport of 35S sulphate in retinal ganglion cells of the rabbit, J. Neurochem. 28: 293–297.CrossRefGoogle Scholar
  72. Karlsson, J.–O., and SjOstrand, J., 1971, Rapid intracellular transport of fucose–containing glycoproteins in retinal ganglion cells, J. Neurochem. 18: 2209–2216.PubMedCrossRefGoogle Scholar
  73. Kauffman, F. C., Albuquerque, E. X., Warnick, J. E.,and Max, S. R., 1976, Effect of vinblastine on neural regulation of metabolism in rat skeletal muscle, Exp. Neurol 50: 60–66.Google Scholar
  74. Koenig, H. L., DiGiamberardino, L., and Bennett, G., 1973, Renewal of proteins and glycoproteins of synaptic constituents by means of axonal transport, Brain Res. 62: 413–417.PubMedCrossRefGoogle Scholar
  75. Komiya, Y., and Austin, L., 1974, Axoplasmic flow of proteins in the sciatic nerve of normal and dystrophic mice, Exp. Neurol 43: 1–12.PubMedCrossRefGoogle Scholar
  76. Kreutzberg, G. W., Schubert, P., Toth, L., and Rieske, E., 1973, Intradendritic transport to postsynaptic sites, Brain Res. 62: 399–404.PubMedCrossRefGoogle Scholar
  77. Langley, O. K., and Kennedy, P., 1977, The metabolism of nerve terminal glycoproteins in the rat brain, Brain Res. 130: 109–120.PubMedCrossRefGoogle Scholar
  78. Lasek, R. J., 1975, Axonal transport and the use of intracellular markers in neuroanatomical investigations, Fed. Proc. Fed. Am. Soc. Exp. Biol. 34: 1603–1609.Google Scholar
  79. Ledeen, R. W., Skrivanek, J. A., Tirri, L. J., Margolis, R. K., and Margolis, R. U., 1976, Gangliosides of the neuron: Localization and origin, Adv. Exp. Med. Biol. 71: 83–103.PubMedGoogle Scholar
  80. Levin, B. E., 1977, Axonal transport of 3H fucosyl glycoproteins in noradrenergic neurons in the rat brain, Brain Res. 130: 424–432.CrossRefGoogle Scholar
  81. Lubitfska, L., 1975, On axonal flow, Int. Rev. Neurobiol. 17: 241–296.CrossRefGoogle Scholar
  82. Maccioni, H. J., Landa, C., Arce, A., and Caputto, R., 1977, The biosynthesis of brain gangli–osides—Evidence for a “transient pool” and an “end product pool” of gangliosides, Adv. Exp. Med. Biol. 83: 267–281.PubMedGoogle Scholar
  83. Marchisio, P. C., Sjostrand, J., Aglietta, M., and Karlsson, J.–O., 1973, The development of axonal transport of proteins and glycoproteins in the optic pathway of chick embryos, Brain Res. 63: 273–284.PubMedCrossRefGoogle Scholar
  84. Marchisio, P. C., Gremo, F., and Sjostrand, J., 1975, Axonal transport in embryonic neurons: The possibility of a proximo–distal axolemmal transfer of glycoproteins, Brain Res. 85: 281–285.PubMedCrossRefGoogle Scholar
  85. Margolis, R. K., and Gomez, Z., 1973, Rapid turnover of fucose in the water-soluble glycoproteins of brain, Biochim. Biophys. Acta 313: 226–228.PubMedCrossRefGoogle Scholar
  86. Margolis, R. K., and Margolis, R. U., 1972, Disposition of fucose in brain, J. Neurochem. 19: 1023–1030.PubMedCrossRefGoogle Scholar
  87. Margolis, R. K., and Margolis, R. U., 1973, The turnover of hexosamine and sialic acid in glycoproteins and mucopolysaccharides of brain, Biochim. Biophys. Acta 304: 413–420.PubMedCrossRefGoogle Scholar
  88. Margolis, R. K., Margolis, R. U., Preti, C., and Lai, D., 1975a, Distribution and metabolism of glycoproteins and glycosaminoglycans in subcellular fractions in brain, Biochemistry 14: 4797–4803.PubMedCrossRefGoogle Scholar
  89. Margolis, R. K., Preti, C., Chang, L., and Margolis, R. U., 19756, Metabolism of the protein moiety of brain glycoproteins, J. Neurochem. 25:707–709.Google Scholar
  90. Margolis, R. U., and Margolis, R. K., 1972, Sulfate turnover in mucopolysaccharides and glycoproteins of brain, Biochim. Biophys. Acta 264: 426–431.PubMedCrossRefGoogle Scholar
  91. Margolis, R. U., and Margolis, R. K., 1974, Distribution and metabolism of mucopolysaccharides and glycoproteins in neuronal perikarya, astrocytes, and oligodendroglia, Biochemistry 13: 2849–2852.PubMedCrossRefGoogle Scholar
  92. Margolis, R. U., and Margolis, R. K., 1977, Metabolism and function of glycoproteins and gly–cosaminoglycans in nervous tissue, Int. J. Biochem. 8: 85–91.CrossRefGoogle Scholar
  93. Marinari, U. F., Morgan, I. G., Mack, G., and Gombos, G., 1972, Synthesis of synaptic glycoproteins. II. Delayed labelling of the glycoproteins of synaptic vesicles and synaptosomal plasma membranes, Neurobiology 2: 176–182.PubMedGoogle Scholar
  94. Marko, P., and Cuenod, M., 1973, Contribution of the nerve cell body to renewal of axonal and synaptic glycoproteins in the pigeon visual system, Brain Res. 62: 419–423.PubMedCrossRefGoogle Scholar
  95. Markov, D., Rambourg, A., and Droz, B., 1976, Smooth endoplasmic reticulum and fast axonal transport of glycoproteins, an electron microscope radioautographic study of thick sections after heavy metals impregnation, J. Microsc. Biol. Cell. 25: 57–60.Google Scholar
  96. Matthieu, J.–M., Webster, H. DeF., DeVries, G. H., Corthay, S., and Koellreutter, B., 1978, Glial versus neuronal origin of myelin proteins and glycoproteins studied by combined intraocular and intracranial labelling, J. Neurochem. 31: 93–102.PubMedCrossRefGoogle Scholar
  97. McEwen, B. S., Forman, D. S., and Grafstein, B., 1971, Components of fast and slow axonal transport in the goldfish optic nerve, J. Neurobiol. 2: 361–377.PubMedCrossRefGoogle Scholar
  98. McLane, J. A., and McClure, W. O., 1977, Rapid axoplasmic transport in dystrophic mice, J. Neurochem. 29: 865–872.PubMedCrossRefGoogle Scholar
  99. McLean, W. G., Frizell, M., and Sjostrand, J., 1975, Axonal transport of labelled proteins in sensory fibres of rabbit vagus nerve in vitro, J. Neurochem. 25: 695–698.PubMedCrossRefGoogle Scholar
  100. McLean, W. G., Frizell, M., and Sjostrand, J., 1976, Labelled proteins in rabbit vagus nerve between the fast and slow phases of axonal transport, J. Neurochem. 26: 77–82.PubMedCrossRefGoogle Scholar
  101. Miani, N., 1962, Evidence of a proximo–distal movement along the axon of a phospholipid synthesized in the nerve-cell body, Nature (London) 193: 887–888.Google Scholar
  102. Monticone, R. E., and Elam, J. S., 1975, Isolation of axonally transported glycoproteins with goldfish visual system myelin, Brain Res. 100: 61–71.PubMedCrossRefGoogle Scholar
  103. Morgan, I. G., Zanetta, J.-P., Breckenridge, W. C., Vincedon, G., and Gombos, G., 1973, The chemical structure of synaptic membranes, Brain Res. 62: 405–411.PubMedCrossRefGoogle Scholar
  104. Morgan, I. G., Tettamanti, G., and Gombos, G., 1976, Biochemical evidence on the role of gangliosides in nerve-endings, Adv. Exp. Med. Biol. 71: 137–150.PubMedGoogle Scholar
  105. Neale, J. H., Neale, E. A., and Agranoff, B. W., 1972, Radioautography of the optic tectum of the goldfish after intraocular injection of 3H proline, Science 176: 407–410.PubMedCrossRefGoogle Scholar
  106. Ochs, S., 1972, Fast transport of materials in mammalian nerve fibers, Science 176: 252–260.PubMedCrossRefGoogle Scholar
  107. Ochs, S., 1974, Systems of material transport in nerve fibers (axoplasmic transport) related to nerve function and trophic control, in: Trophic Function of the Neuron (D. Drachman, ed.), Ann. N. Y. Acad. Sci. 228: 202–223.Google Scholar
  108. Ochs, S., 1975, Axoplasmic transport, in: The Nervous System, Vol. 1, The Basic Neurosciences ( D. B. Tower, ed.), pp. 137–146, Raven Press, New York.Google Scholar
  109. Ochs, S., and Burger, E., 1958, Movement of substance proximo-distally in nerve axons as studied with spinal cord injection of radioactive phosphorus, Am. J. Physiol. 194: 499–506.PubMedGoogle Scholar
  110. Oh, T. H., 1976, Neurotrophic effects of sciatic nerve extracts on muscle development in culture, Exp. Neurol. 50: 376–386.PubMedCrossRefGoogle Scholar
  111. Perisic, M., and Cuenod, M., 1972, Synaptic transmission depressed by colchicine blockade of axoplasmic flow, Science 175: 1140–1142.PubMedCrossRefGoogle Scholar
  112. Poduslo, J. F., Everly, J. L., and Quarles, R. H., 1977, A low molecular weight glycoprotein associated with isolated myelin: Distinction from myelin proteolipid protein, J. Neurochem. 28: 977–986.PubMedCrossRefGoogle Scholar
  113. Quarles, R. H., and Brady, R. O., 1971, Synthesis of glycoproteins and gangliosides in developing rat brain, J. Neurochem. 18: 1809–1820.PubMedCrossRefGoogle Scholar
  114. Reperant, J., Lemire, M., Miceli, D., and Peyrichoux, J., 1976, A radioautographic study of the visual system in fresh water teleosts following intraocular injection of tritiated fucose and proline, Brain Res. 118: 123–131.PubMedCrossRefGoogle Scholar
  115. Reperant, J., Miceli, D., and Raffin, J., 1977, Transneuronal transport of tritiated fucose and proline in the avian visual system, Brain Res. 121: 343–347.CrossRefGoogle Scholar
  116. Ripellino, J. A., and Elam, J. S., 1978, Differentiated turnover of axonally transported glycoproteins, Soc. Neurosci. Abs. 4: 36.Google Scholar
  117. Rosner, H., 1975, Incorporation of scialic acid into gangliosides and glycoproteins of the optic pathway following an intraocular injection of N–3H acetylmannosamine in the chicken, Brain Res. 97: 107–116.PubMedCrossRefGoogle Scholar
  118. Rosner, H., Wiegandt, H., and Rahmann, H., 1973, Sialic acid incorporation into gangliosides and glycoproteins of the fish brain, J. Neurochem. 21: 655–665.PubMedCrossRefGoogle Scholar
  119. Segrest, J. P., Jackson, R. L., Andrews, E. P., Marchesi, V. T., 1971, Human erythrocyte membrane glycoprotein: A re-evaluation of the molecular weight as determined by SDS poly– acrylamide gel electrophoresis, Biochem. Biophys. Res. Commun. 44: 390–395.PubMedCrossRefGoogle Scholar
  120. Sellin, L. C., and McArdle, J. J., 1977, Colchicine blocks neurotrophic regulation of the resting membrane potential in reinnervating skeletal muscle, Exp. Neurol. 55: 483–492.Google Scholar
  121. Sjostrand, J., Karlsson, J.–O., and Marchisio, P. C., 1973, Axonal transport in growing and mature retinal ganglion cells, Brain Res. 62: 395–397.PubMedCrossRefGoogle Scholar
  122. Specht, S., and Grafstein, B., 1973, Accumulation of radioactive protein in mouse cerebral cortex after injection of 3H fucose into the eye, Exp. Neurology 41: 705–722.CrossRefGoogle Scholar
  123. Specht, S. C., and Grafstein, B., 1977, Axonal transport and trans neural transfer in mouse visual system following injection of 3H fucose into the eye, Exp. Neurology 54: 352–368.CrossRefGoogle Scholar
  124. Tan, C. H., Peterson, N. A., and Raghupathy, E., 1977, Characteristics of D-glucosamine uptake by rat brain synaptosomes, J. Neurochem. 29: 261–265.PubMedCrossRefGoogle Scholar
  125. Taylor, A. C., and Weiss, P., 1965, Demonstration of axonal flow by the movement of tritium– labelled protein in mature optic nerve fibers, Proc. Natl Acad. Sci. U.S.A. 54: 1521–1527.PubMedCrossRefGoogle Scholar
  126. Thompson, E. B., Schwartz, J. H., and Kandel, E. R., 1976, A radioautographic analysis in the light and electron microscope of identified Aplysia neurons and their processes after intra-somatic injection of L-3H fucose, Brain Res. 112: 251–281.PubMedCrossRefGoogle Scholar
  127. Truding, R., Shelanski, M. L., and Morell, P., 1975, Glycoproteins released into the culture medium of differentiating murine neuroblastoma cells, J. Biol Chem. 250: 9348–9345.PubMedGoogle Scholar
  128. Weiss, P., 1961, The concept of perpetual neuronal growth and proximo-distal substance convection, in: Regional Neurochemistry ( S. S. Kety and J. Elkes, eds.), pp. 220–242, Per-gamon, Oxford.Google Scholar
  129. Weiss, P., and Hiscoe, H. L., 1948, Experiments on the mechanism of nerve growth, J. Exp. Zool. 107: 315–396.PubMedCrossRefGoogle Scholar
  130. Wiesel, T. N., Hubel, D. H., and Lam, D. M. K., 1974, Autoradiographic demonstration of ocular-dominance columns in the monkey striate cortex by means of transneuronal transport, Brain Res. 79: 273–279.PubMedCrossRefGoogle Scholar
  131. Zatz, M., and Barondes, S. H., 1971, Rapid transport offucosyl glycoproteins to nerve endings in mouse brain, J. Neurochem. 18: 1125–1133.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • J. S. Elam
    • 1
  1. 1.Department of Biological ScienceFlorida State UniversityTallahasseeUSA

Personalised recommendations